cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A256034 Number of irreducible idempotents in partition monoid P_n.

Original entry on oeis.org

2, 8, 58, 648, 9794, 187302, 4353920, 119604518, 3803405406, 137828444548, 5621826966870, 255529007818470, 12836027705244956, 707657189518002658, 42563168959162893550, 2778631761757307345760, 196003207603955109742122
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2015

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_, r_, s_] := f[n, r, s] = Module[{resu, m, a, b}, Which[n <= 0, 0, s == 1, StirlingS2[n, r], r == 1, StirlingS2[n, s], True, resu = s f[n-1, r-1, s] + r f[n-1, r, s-1] + r s f[n-1, r, s]; Do[resu += Binomial[n-2, m] (b (r-a) + a (s-b)) f[m, a, b] f[-m+n-1, r-a, s-b], {m, n}, {a, r-1}, {b, s-1}]; resu]];
    a33[n_] := Module[{b = 0}, Do[b += r s f[n, r, s], {r, n}, {s, n}]; b];
    a39[n_] := Module[{t}, t = Table[BellB[k-1]^2/(k-1)!, {k, 1, n+1}]; n! SeriesCoefficient[1 + Log[O[x]^(n+1) + Sum[t[[i]] x^(i-1), {i, 1, Length[t]}]], n]];
    a[n_] := a33[n] + a39[n];
    Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Dec 15 2018  *)

Formula

a(n) = A060639(n) + A256033(n).

A256035 Number of idempotent basis elements in partition monoid P_n.

Original entry on oeis.org

1, 1, 6, 59, 807, 14102, 301039, 7618613, 223586932, 7482796089, 281882090283
Offset: 0

Views

Author

N. J. A. Sloane, Mar 14 2015

Keywords

Crossrefs

A256042 Triangle read by rows: number of idempotent basis elements of rank k in partition monoid P_n.

Original entry on oeis.org

1, 0, 1, 0, 5, 1, 0, 43, 15, 1, 0, 529, 247, 30, 1, 0, 8451, 4795, 805, 50, 1, 0, 167397, 108871, 22710, 1985, 75, 1, 0, 3984807, 2855279, 697501, 76790, 4130, 105, 1, 0, 111319257, 85458479, 23520966, 3070501, 209930, 7658, 140, 1, 0, 3583777723, 2887069491, 871103269, 129732498, 10604811, 495054, 13062, 180, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 14 2015

Keywords

Comments

Also the Bell transform of A256033(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 17 2016

Examples

			Triangle begins:
1,
0, 1,
0, 5, 1,
0, 43, 15, 1,
0, 529, 247, 30, 1,
0, 8451, 4795, 805, 50, 1,
0, 167397, 108871, 22710, 1985, 75, 1,
0, 3984807, 2855279, 697501, 76790, 4130, 105, 1,
0, 111319257, 85458479, 23520966, 3070501, 209930, 7658, 140, 1,
...
		

Crossrefs

Cf. A256033.

Programs

  • Mathematica
    rows = 10;
    f[n_, r_, s_] := f[n, r, s] = Module[{resu, m, a, b}, Which[n <= 0, 0, s == 1, StirlingS2[n, r], r == 1, StirlingS2[n, s], True, resu = s*f[n - 1, r - 1, s] + r*f[n - 1, r, s - 1] + r*s*f[n - 1, r, s]; Do[resu += Binomial[n - 2, m]*(b*(r - a) + a*(s - b))*f[m, a, b]*f[-m + n - 1, r - a, s - b], {m, n}, {a, r - 1}, {b, s - 1}]; resu]];
    a33[n_] := Module[{b = 0}, Do[b += r*s*f[n, r, s], {r, n}, {s, n}]; b];
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    M = BellMatrix[a33[# + 1]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, after Peter Luschny and R. J. Mathar *)
  • Sage
    # uses[bell_matrix from A264428]
    A256042_generator = lambda n: A256033(n+1)
    bell_matrix(A256042_generator, 9) # Peter Luschny, Jan 17 2016
Showing 1-3 of 3 results.