cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256041 Triangle read by rows: number of idempotent basis elements of rank k in Brauer monoid B_n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 6, 0, 1, 0, 0, 24, 0, 1, 0, 120, 0, 60, 0, 1, 0, 0, 1080, 0, 120, 0, 1, 0, 5040, 0, 5040, 0, 210, 0, 1, 0, 0, 80640, 0, 16800, 0, 336, 0, 1, 0, 362880, 0, 604800, 0, 45360, 0, 504, 0, 1, 0, 0, 9072000, 0, 3024000, 0, 105840, 0, 720, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 14 2015

Keywords

Comments

Also the Bell transform of A005212(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Triangle begins:
1,
0, 1,
0, 0, 1,
0, 6, 0, 1,
0, 0, 24, 0, 1,
0, 120, 0, 60, 0, 1,
0, 0, 1080, 0, 120, 0, 1,
0, 5040, 0, 5040, 0, 210, 0, 1,
0, 0, 80640, 0, 16800, 0, 336, 0, 1,
0, 362880, 0, 604800, 0, 45360, 0, 504, 0, 1,
0, 0, 9072000, 0, 3024000, 0, 105840, 0, 720, 0, 1,
...
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n::odd, 0, (n+1)!), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, If[OddQ[n], 0, (n + 1)!]], rows = 12];
    Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)