This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256061 #30 Sep 28 2023 05:27:17 %S A256061 1,0,1,0,2,4,0,5,30,30,0,14,196,504,336,0,42,1260,6300,10080,5040,0, %T A256061 132,8184,71280,205920,237600,95040,0,429,54054,774774,3603600, %U A256061 7207200,6486480,2162160,0,1430,363220,8288280,58378320,180180000,273873600,201801600,57657600 %N A256061 Number T(n,k) of 2n-length strings of balanced parentheses of exactly k different types; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A256061 Also number of binary trees with n inner nodes of exactly k different dimensions. T(2,2) = 4: %C A256061 : balanced parentheses : ([]) : [()] : ()[] : []() : %C A256061 :----------------------:-------:-------:-------:-------: %C A256061 : trees : (1) : [2] : (1) : [2] : %C A256061 : : / \ : / \ : / \ : / \ : %C A256061 : : [2] : (1) : [2] : (1) : %C A256061 : : / \ : / \ : / \ : / \ : %H A256061 Alois P. Heinz, <a href="/A256061/b256061.txt">Rows n = 0..140, flattened</a> %F A256061 T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * (k-i)^n * A000108(n). %F A256061 T(n,k) = k! * A253180(n,k). %F A256061 T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A290605(n,k-i). - _Alois P. Heinz_, Oct 28 2019 %e A256061 A(3,2) = 30: (())[], (()[]), (([])), ()()[], ()([]), ()[()], ()[[]], ()[](), ()[][], ([()]), ([[]]), ([]()), ([])(), ([])[], ([][]), [(())], [()()], [()[]], [()](), [()][], [([])], [[()]], [[]()], [[]](), [](()), []()(), []()[], []([]), [][()], [][](). %e A256061 Triangle T(n,k) begins: %e A256061 1; %e A256061 0, 1; %e A256061 0, 2, 4; %e A256061 0, 5, 30, 30; %e A256061 0, 14, 196, 504, 336; %e A256061 0, 42, 1260, 6300, 10080, 5040; %e A256061 0, 132, 8184, 71280, 205920, 237600, 95040; %e A256061 0, 429, 54054, 774774, 3603600, 7207200, 6486480, 2162160; %e A256061 ... %p A256061 ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end: %p A256061 A:= proc(n, k) option remember; k^n*ctln(n) end: %p A256061 T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): %p A256061 seq(seq(T(n, k), k=0..n), n=0..10); %t A256061 A[0, 0] = 1; A[n_, k_] := A[n, k] = k^n*CatalanNumber[n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 20 2017, translated from Maple *) %Y A256061 Columns k=0-1 give: A000007, A000108 (for n>0). %Y A256061 Main diagonal gives A001761. %Y A256061 Cf. A253180, A255982, A258427, A290605. %K A256061 nonn,tabl %O A256061 0,5 %A A256061 _Alois P. Heinz_, Mar 13 2015