This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256064 #20 Jan 04 2021 16:52:15 %S A256064 1,0,1,0,2,3,0,4,18,16,0,9,89,201,125,0,20,418,1830,2720,1296,0,48, %T A256064 1962,14845,39720,43580,16807,0,115,9268,114624,492276,934455,809760, %U A256064 262144,0,286,44375,866148,5613775,16413510,23991063,17152163,4782969 %N A256064 Number T(n,k) of rooted trees with n nodes and colored non-root nodes using exactly k colors; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows. %H A256064 Alois P. Heinz, <a href="/A256064/b256064.txt">Rows n = 1..141, flattened</a> %F A256064 T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A242249(n,k-i). %e A256064 T(3,2) = 3: %e A256064 o o o %e A256064 | | / \ %e A256064 1 2 1 2 %e A256064 | | %e A256064 2 1 %e A256064 Triangle T(n,k) begins: %e A256064 1; %e A256064 0, 1; %e A256064 0, 2, 3; %e A256064 0, 4, 18, 16; %e A256064 0, 9, 89, 201, 125; %e A256064 0, 20, 418, 1830, 2720, 1296; %e A256064 0, 48, 1962, 14845, 39720, 43580, 16807; %e A256064 0, 115, 9268, 114624, 492276, 934455, 809760, 262144; %e A256064 ... %p A256064 with(numtheory): %p A256064 A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d* %p A256064 A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1)) %p A256064 end: %p A256064 T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): %p A256064 seq(seq(T(n, k), k=0..n-1), n=1..10); %t A256064 A[n_, k_] := A[n, k] = If[n < 2, n, (Sum[Sum[d*A[d, k], {d, Divisors[j]}]* A[n - j, k]*k, {j, 1, n - 1}])/(n - 1)]; %t A256064 T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; %t A256064 Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* _Jean-François Alcover_, Jan 07 2020, from Maple *) %Y A256064 Columns k=0-1 give: A063524 (for n>0), A000081 (for n>1): %Y A256064 Main diagonal gives: A000272 (for n>0). %Y A256064 T(2n+1,n) gives A309994. %Y A256064 Cf. A242249, A256068. %K A256064 nonn,tabl %O A256064 1,5 %A A256064 _Alois P. Heinz_, Mar 13 2015