cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256065 Zeroless numbers that when incremented or decremented by the product of their digits produce a square.

This page as a plain text file.
%I A256065 #23 Jun 06 2025 17:28:38
%S A256065 2,8,46692,58896,59949,186633,186673,949968,1587616,2989584,58988961,
%T A256065 245878784,914457625,2439577764,2754991369,4161798288,4161798468,
%U A256065 4629457984,4897936656,29859851664,34828536976,41664977536,59998484736,96745892625,134994579556
%N A256065 Zeroless numbers that when incremented or decremented by the product of their digits produce a square.
%C A256065 If a term has a zero in it, its digit product is 0. Thus it is trivial to include cubes with one or more zeros.
%C A256065 Intersection of A066567, A228187, and A052382.
%C A256065 Is this sequence finite?
%C A256065 Replacing "squares" with "cubes", this sequence would only consist of {4} for n < 10^8. 4 is believed to be the only number to satisfy this property with cubes.
%C A256065 If it exists, a(20) > 10^10.
%C A256065 a(80) > 10^27. - _Hiroaki Yamanouchi_, Mar 16 2015
%H A256065 Hiroaki Yamanouchi, <a href="/A256065/b256065.txt">Table of n, a(n) for n = 1..79</a>
%e A256065 46692 + 4*6*6*9*2 = 49284 = 222^2 and 46692 - 4*6*6*9*2 = 210^2. So 46692 is a member of this sequence.
%t A256065 pdsQ[n_]:=With[{p=Times@@IntegerDigits[n]},p>0&&AllTrue[Sqrt[n+{p,-p}],IntegerQ]]; Select[Range[3*10^6],pdsQ] (* The program generates the first 10 terms of the sequence. *) (* _Harvey P. Dale_, Jun 06 2025 *)
%o A256065 (PARI) for(n=0,10^7,d=digits(n);p=prod(i=1,#d,d[i]);if(p&&issquare(n-p)&&issquare(n+p),print1(n,", ")))
%Y A256065 Cf. A066567 (when incremented), A228187 (when decremented), A052382 (zeroless).
%K A256065 nonn,base
%O A256065 1,1
%A A256065 _Derek Orr_, Mar 13 2015
%E A256065 a(12)-a(19) from _Michel Marcus_, Mar 14 2015
%E A256065 a(20)-a(25) from _Hiroaki Yamanouchi_, Mar 16 2015