This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256068 #18 Jan 04 2021 16:54:06 %S A256068 1,0,1,0,1,3,0,2,14,16,0,3,60,174,125,0,6,254,1434,2464,1296,0,12, %T A256068 1087,10746,33362,40455,16807,0,25,4742,77556,388312,816535,763104, %U A256068 262144,0,52,21020,551460,4191916,13617210,21501684,16328620,4782969 %N A256068 Number T(n,k) of rooted identity trees with n nodes and colored non-root nodes using exactly k colors; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows. %H A256068 Alois P. Heinz, <a href="/A256068/b256068.txt">Rows n = 1..141, flattened</a> %F A256068 T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A255517(n). %e A256068 T(4,2) = 14: %e A256068 : 0 0 0 0 0 0 0 0 %e A256068 : | | | | | | | | %e A256068 : 1 1 2 2 2 1 1 2 %e A256068 : | | | | | | / \ / \ %e A256068 : 1 2 1 2 1 2 1 2 1 2 %e A256068 : | | | | | | %e A256068 : 2 1 1 1 2 1 %e A256068 : %e A256068 : 0 0 0 0 0 0 %e A256068 : / \ / \ / \ / \ / \ / \ %e A256068 : 1 1 2 1 1 2 2 2 1 2 2 1 %e A256068 : | | | | | | %e A256068 : 2 1 1 1 2 2 %e A256068 Triangle T(n,k) begins: %e A256068 1; %e A256068 0, 1; %e A256068 0, 1, 3; %e A256068 0, 2, 14, 16; %e A256068 0, 3, 60, 174, 125; %e A256068 0, 6, 254, 1434, 2464, 1296; %e A256068 0, 12, 1087, 10746, 33362, 40455, 16807; %e A256068 0, 25, 4742, 77556, 388312, 816535, 763104, 262144; %e A256068 ... %p A256068 with(numtheory): %p A256068 A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add( %p A256068 k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1)) %p A256068 end: %p A256068 T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): %p A256068 seq(seq(T(n, k), k=0..n-1), n=1..10); %t A256068 A[n_, k_] := A[n, k] = If[n < 2, n, Sum[A[n - j, k] Sum[k A[d, k] d * (-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n - 1}]/(n - 1)]; %t A256068 T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]; %t A256068 Table[T[n, k], {n, 10}, {k, 0, n - 1}] // Flatten (* _Jean-François Alcover_, May 29 2020, after Maple *) %Y A256068 Columns k=0-1 give: A063524 (for n>0), A004111 (for n>1): %Y A256068 Main diagonal gives: A000272 (for n>0). %Y A256068 Row sums give A319220(n-1). %Y A256068 T(2n+1,n) gives A309996. %Y A256068 Cf. A255517, A256064. %K A256068 nonn,tabl %O A256068 1,6 %A A256068 _Alois P. Heinz_, Mar 13 2015