This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256069 #13 May 02 2022 09:32:55 %S A256069 1,0,1,0,1,5,0,1,34,633,0,1,315,89544,7520386,0,1,5622,64780113, %T A256069 79587235420,20435529209470,0,1,251608,302752112913,9177112514843320, %U A256069 28079504654455279395,19740907671252532135134 %N A256069 Number T(n,k) of inequivalent n X n matrices with entry set {1,...,k}, where equivalence means permutations of rows or columns; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A256069 Alois P. Heinz, <a href="/A256069/b256069.txt">Rows n = 0..20, flattened</a> %H A256069 <a href="/index/Mat#inequiv">Index to number of inequivalent matrices modulo permutation of row and columns</a> %F A256069 T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A246106(n,k-i). %e A256069 T(2,2) = 5: %e A256069 [1 1] [1 2] [1 2] [1 1] [1 2] %e A256069 [1 2] [2 2] [1 2] [2 2] [2 1]. %e A256069 Triangle T(n,k) begins: %e A256069 1; %e A256069 0, 1; %e A256069 0, 1, 5; %e A256069 0, 1, 34, 633; %e A256069 0, 1, 315, 89544, 7520386; %e A256069 0, 1, 5622, 64780113, 79587235420, 20435529209470; %p A256069 b:= proc(n, i) option remember; `if`(n=0, [[]], %p A256069 `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]], %p A256069 b(n-i*j, i-1))[], j=1..n/i)])) %p A256069 end: %p A256069 A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]* %p A256069 igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s) %p A256069 /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2)) %p A256069 end: %p A256069 T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): %p A256069 seq(seq(T(n, k), k=0..n), n=0..8); %Y A256069 Cf. A246106. %Y A256069 Main diagonal gives A256070. %K A256069 nonn,tabl %O A256069 0,6 %A A256069 _Alois P. Heinz_, Mar 13 2015