This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256070 #13 Feb 28 2023 08:29:14 %S A256070 1,1,5,633,7520386,20435529209470,19740907671252532135134, %T A256070 10077866175951324796988844418739012, %U A256070 3855174405512686506030123555473042980898031518176,1492231601551989489818761885384738502799149242563553845787532236092 %N A256070 Number of inequivalent n X n matrices with entry set {1,...,n}, where equivalence means permutations of rows or columns. %H A256070 Alois P. Heinz, <a href="/A256070/b256070.txt">Table of n, a(n) for n = 0..20</a> %H A256070 <a href="/index/Mat#inequiv">Index to number of inequivalent matrices modulo permutation of rows and columns</a> %F A256070 a(n) = Sum_{i=0..n} (-1)^i * C(n,i) * A246106(n,n-i). %e A256070 a(2) = 5: %e A256070 [1 1] [1 2] [1 2] [1 1] [1 2] %e A256070 [1 2] [2 2] [1 2] [2 2] [2 1]. %p A256070 b:= proc(n, i) option remember; `if`(n=0, [[]], %p A256070 `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]], %p A256070 b(n-i*j, i-1))[], j=1..n/i)])) %p A256070 end: %p A256070 A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]* %p A256070 igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s) %p A256070 /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2)) %p A256070 end: %p A256070 a:= n-> add(A(n, n-i)*(-1)^i*binomial(n, i), i=0..n): %p A256070 seq(a(n), n=0..10); %Y A256070 Main diagonal of A256069. %K A256070 nonn %O A256070 0,3 %A A256070 _Alois P. Heinz_, Mar 13 2015