A256071 Number of ordered ways to write n = p + x*(3*x-1)/2, where p is prime or zero, and x is an integer.
1, 1, 2, 2, 2, 3, 1, 4, 2, 2, 2, 1, 4, 2, 3, 3, 1, 3, 4, 3, 3, 1, 3, 2, 4, 3, 3, 1, 3, 4, 2, 4, 2, 3, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 3, 4, 3, 2, 4, 3, 1, 3, 3, 5, 4, 3, 2, 3, 4, 5, 3, 2, 4, 4, 4, 2, 3, 2, 5, 4, 3, 3, 4, 5, 5, 3, 4, 3, 3, 4, 5, 4, 4, 5, 3, 3, 3, 3, 6, 3, 3, 2, 2, 4, 7, 3, 3, 3, 4, 5, 3
Offset: 0
Keywords
Examples
a(11) = 1 since 11 = 11 + 0*(3*0-1)/2 with 11 prime. a(15) = 1 since 15 = 0 + (-3)*(3*(-3)-1)/2. a(50) = 1 since 50 = 43 + (-2)*(3*(-2)-1)/2 with 43 prime.
References
- Zhi-Wei Sun, On sums of primes and triangular numbers, J. Comb. Number Theory 1(2009), 65-76.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, On sums of primes and triangular numbers, arXiv:0803.3737 [math.NT], 2008-2009.
- Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
Programs
-
Mathematica
P[n_]:=(n==0)||PrimeQ[n] Do[r=0;Do[If[P[n-x(3x-1)/2],r=r+1],{x,-Floor[(Sqrt[24n+1]-1)/6],Floor[(Sqrt[24n+1]+1)/6]}];Print[n," ",r];Label[aa];Continue,{n,0,100}]
-
PARI
a(n)=if(n==0, return(1)); sum(x=1,(1+sqrt(24*n+1))\6, isprime(n-x*(3*x-1)/2))+sum(x=0,(sqrt(24*n+1)-1)\6, isprime(n-x*(3*x+1)/2))+ispolygonal(n,5)+(x->3*x^2+x==2*n)(round((sqrt(24*n+1)-1)/6)) \\ Charles R Greathouse IV, Apr 07 2015
Comments