cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256072 Primes that cannot be represented as x*y + x + y, where x >= y > 1.

Original entry on oeis.org

2, 3, 5, 7, 13, 37, 61, 73, 157, 193, 277, 313, 397, 421, 457, 541, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061, 3217, 3253, 3313
Offset: 1

Views

Author

Alex Ratushnyak, Mar 14 2015

Keywords

Comments

Primes in A254636.

Crossrefs

Programs

  • PARI
    v=[];for(m=2,500,for(k=m,500,if(isprime(P=k*m+k+m),v=concat(v,P))));v=vecsort(v,,8);forprime(p=1,2000,if(!vecsearch(v,p),print1(p,", "))) \\ Derek Orr, Mar 21 2015
  • Python
    import sympy
    from sympy import isprime
    TOP = 10000
    a = [0]*TOP
    for y in range(2, TOP//2):
      for x in range(y, TOP//2):
        k = x*y + x + y
        if k>=TOP: break
        a[k]+=1
    print([n for n in range(TOP) if a[n]==0 and isprime(n)])
    

Formula

{2, 7} UNION A005383 = {7} UNION A079147. - Chai Wah Wu, Oct 15 2024