cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256077 Repeat 2^d times the repunit A002275(d); d = 1, 2, 3...

Original entry on oeis.org

1, 1, 11, 11, 11, 11, 111, 111, 111, 111, 111, 111, 111, 111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111
Offset: 1

Views

Author

M. F. Hasler, Mar 21 2015

Keywords

Comments

Yields the length of the n-th (nonempty) binary word (or word over any 2-letter alphabet, like A007931 or A032810 or A032834) in tally mark notation (A000042).

Programs

  • Mathematica
    lim = 5; lst = Table[(10^n - 1)/9, {n, 0, lim}]; Reap@ For[i = 1, i <= lim, i++, Sow@ Table[lst[[i + 1]], {d, 2^i}]] // Flatten // Rest (* Michael De Vlieger, Apr 01 2015 *)
  • PARI
    a(n)=10^#binary(n+1)\90
    
  • Python
    def A256077(n): return (10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Nov 07 2024

Formula

a(n) = A002275(A000523(n+1)) = A032810(n)-A007931(n) = A032834(n)-A032810(n), etc.