A255250 Array T(n, m) of numbers of points of a square lattice in the first octant covered by a circular disk of radius n (centered at any lattice point taken as origin) with ordinate y = m.
1, 2, 3, 1, 4, 2, 1, 5, 3, 2, 6, 4, 3, 2, 7, 5, 4, 3, 1, 8, 6, 5, 4, 2, 9, 7, 6, 5, 3, 2, 10, 8, 7, 6, 5, 3, 1, 11, 9, 8, 7, 6, 4, 3, 1, 12, 10, 9, 8, 7, 5, 4, 2, 13, 11, 10, 9, 8, 6, 5, 3, 1, 14, 12, 11, 10, 9, 8, 6, 4, 3, 1, 15, 13, 12, 11, 10, 9, 7, 6, 4, 2, 16, 14, 13, 12, 11, 10, 8, 7, 5, 4, 2
Offset: 0
Examples
The array (irregular triangle) T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 .... 0: 1 1: 2 2: 3 1 3: 4 2 1 4: 5 3 2 5: 6 4 3 2 6: 7 5 4 3 1 7: 8 6 5 4 2 8: 9 7 6 5 3 2 9: 10 8 7 6 5 3 1 10: 11 9 8 7 6 4 3 1 11: 12 10 9 8 7 5 4 2 12: 13 11 10 9 8 6 5 3 1 13: 14 12 11 10 9 8 6 4 3 1 14: 15 13 12 11 10 9 7 6 4 2 15: 16 14 13 12 11 10 8 7 5 4 2 ...
Links
- E. W. Weisstein, World of Mathematics, Gauss's Circle Problem.
Formula
T(n, m) = floor(sqrt(n^2 - m^2)) - (m-1), n >= 0, m = 0, 1, ..., floor(n/sqrt(2)).
Comments