cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256095 Triangle of greatest common divisors of two triangular numbers (A000217).

This page as a plain text file.
%I A256095 #17 Jan 21 2020 09:13:38
%S A256095 0,1,1,3,1,3,6,1,3,6,10,1,1,2,10,15,1,3,3,5,15,21,1,3,3,1,3,21,28,1,1,
%T A256095 2,2,1,7,28,36,1,3,6,2,3,3,4,36,45,1,3,3,5,15,3,1,9,45,55,1,1,1,5,5,1,
%U A256095 1,1,5,55,66,1,3,6,2,3,3,2,6,3,11,66,78,1,3,6,2,3,3,2,6,3,1,6,78,91,1,1,1,1,1,7,7,1,1,1,1,13,91,105,1,3,3,5,15,21,7,3,15,5,3,3,7,105
%N A256095 Triangle of greatest common divisors of two triangular numbers (A000217).
%H A256095 Robert Israel, <a href="/A256095/b256095.txt">Table of n, a(n) for n = 0..10010</a> (rows 0 to 140, flattened)
%F A256095 T(n, m) = gcd(Tri(n), Tri(m)), 0 <= m <= n, with the triangular numbers Tri = A000217.
%F A256095 T(n, 0) = Tri(n) = T(n, n). T(n, 1) = 1, n >= 0.
%F A256095 Columns m=2: A144437(n-1), m=3: repeat(6, 2, 3, 3, 2, 6, 3, 1, 6, 6, 1, 3) (guess), m=4: repeat(10, 5, 1, 2, 2, 5, 5, 2, 2, 1, 5, 10, 2, 1, 1, 10, 10, 1, 1, 2) (guess), m=5 repeat(15, 3, 1, 3, 15, 5, 3, 3, 1, 15, 15, 1, 3, 3, 5) (guess), ...
%F A256095 From _Robert Israel_, Jan 21 2020: (Start) The guesses are correct. More generally, for each k>=1, T(n,k) is periodic in n with period 2*A000217(k) if k == 0 or 3 (mod 4), A000217(k) if k == 1 or 2 (mod 4). (End)
%e A256095 The triangle T(n, m) begins:
%e A256095 n\m   0 1 2 3  4  5  6  7  8  9 10 11 12 13  14
%e A256095 0:    0
%e A256095 1:    1 1
%e A256095 2:    3 1 3
%e A256095 3:    6 1 3 6
%e A256095 4:   10 1 1 2 10
%e A256095 5:   15 1 3 3  5 15
%e A256095 6:   21 1 3 3  1  3 21
%e A256095 7:   28 1 1 2  2  1  7 28
%e A256095 8:   36 1 3 6  2  3  3  4 36
%e A256095 9:   45 1 3 3  5 15  3  1  9 45
%e A256095 10:  55 1 1 1  5  5  1  1  1  5 55
%e A256095 11:  66 1 3 6  2  3  3  2  6  3 11 66
%e A256095 12:  78 1 3 6  2  3  3  2  6  3  1  6 78
%e A256095 13:  91 1 1 1  1  1  7  7  1  1  1  1 13 91
%e A256095 14: 105 1 3 3  5 15 21  7  3 15  5  3  3  7 105
%e A256095 ...
%p A256095 T:= (i,j) -> igcd(i*(i+1)/2,j*(j+1)/2):
%p A256095 seq(seq(T(i,j),j=0..i),i=0..20); # _Robert Israel_, Jan 20 2020
%o A256095 (PARI) tabl(nn) = {for (n=0, nn, trn = n*(n+1)/2; for (k=0, n, print1(gcd(trn, k*(k+1)/2), ", ");); print(););} \\ _Michel Marcus_, Mar 17 2015
%Y A256095 Cf. A000217, A144437.
%Y A256095 T(2n,n) gives A026741.
%K A256095 nonn,easy,tabl
%O A256095 0,4
%A A256095 _Wolfdieter Lang_, Mar 17 2015