A256107 Irregular triangle read by rows, T(n,k) is the number of pentagrams on the k layers at n iterations of a pentagram fractal (see comment).
1, 2, 4, 1, 7, 2, 2, 12, 4, 5, 2, 1, 20, 7, 10, 4, 2, 2, 33, 12, 18, 8, 4, 4, 2, 1, 54, 20, 31, 14, 7, 8, 4, 2, 2, 88, 33, 52, 24, 12, 14, 8, 4, 4, 2, 1, 143, 54, 86, 40, 20, 24, 14, 7, 8, 4, 2, 2, 232, 88, 141, 66, 33, 40, 24, 12, 14, 8, 4, 4, 2, 1, 376, 143, 230, 108, 54, 66
Offset: 0
Examples
Irreuglar triangle begins: n/k 0 1 2 3 4 5 6 7 8 ... 0 1 1 2 2 4 1 3 7 2 2 4 12 4 5 2 1 5 20 7 10 4 2 2 6 33 12 18 8 4 4 2 1 7 54 20 31 14 7 8 4 2 2 8 88 33 52 24 12 14 8 4 4 ...
Links
- Kival Ngaokrajang, Illustration of initial terms, T(n,k) for n = 0..10, k = 0..13
Programs
-
PARI
{for(n=0, 20, if(n<2, lk=0, lk=floor(3*(n-2)/2)+1); for (k=0, lk, if(k<>0, if(k<>2, if(Mod(k,3)==1, t=fibonacci(n+1-2*(k-1)/3)-1, t=2*(fibonacci(n+2-ceil((2*k+1)/3))-1)), t=fibonacci(n+2)-3), t=fibonacci(n+3-2*k/3)-1); print1(t, ", ")))}
Comments