This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256115 #34 Apr 12 2020 06:14:57 %S A256115 1,2,3,661,983,2631,2893,9254,9628,9642,11892,12385,12893,13836,14642, %T A256115 14661,16472,18615,27519,29474,35383,36213,36914,38691,43386,46215, %U A256115 49231,49342,56176,72576,75384,76256,83631,87291,92843,94482,99146,99482,99842,113865 %N A256115 Zeroless numbers n whose digit product squared is equal to the digit product of n^2. %H A256115 David A. Corneth, <a href="/A256115/b256115.txt">Table of n, a(n) for n = 1..10000</a> %t A256115 fQ[n_] := Block[{d = Times @@ IntegerDigits@ n}, And[d != 0, d^2 == Times @@ IntegerDigits[n^2]]]; Select[Range@ 120000, fQ] (* _Michael De Vlieger_, Apr 22 2015 *) %o A256115 (Python) %o A256115 def product_digits(n): %o A256115 results = 1 %o A256115 while n > 0: %o A256115 remainder = n % 10 %o A256115 results *= remainder %o A256115 n = (n-remainder)/10 %o A256115 return results %o A256115 L = [] %o A256115 for a in range(1, 100000): %o A256115 if product_digits(a*a) == (product_digits(a))*(product_digits(a)) and (product_digits(a) > 0): %o A256115 L.append(a) %o A256115 print(L) %o A256115 (Sage) %o A256115 [x for x in [1..50000] if (0 not in x.digits()) and prod(x.digits())^2==prod((x^2).digits())] # _Tom Edgar_, Apr 03 2015 %o A256115 (PARI) is(n)=vecmin(digits(n))&&A007954(n)^2==A007954(n^2) \\ _M. F. Hasler_, Apr 22 2015 %Y A256115 Cf. A007954, A052382, A256114. %K A256115 nonn,easy,base %O A256115 1,2 %A A256115 _Reiner Moewald_, Mar 15 2015