This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256127 #42 Sep 27 2018 09:51:46 %S A256127 1,2,6,3,2,1,4,8,1,7,0,6,2,0,9,0,3,6,3,6,5,2,2,6,7,5,3,2,5,3,2,0,2,3, %T A256127 9,1,8,4,4,2,4,4,3,0,9,4,6,5,2,8,3,5,1,6,3,7,8,9,9,7,4,3,0,4,2,9,0,8, %U A256127 6,7,4,0,0,8,5,1,2,5,4,3,7,1,7,8,0,5,2,9,7,4,1,9,8,2,9,7,0,0,2,2,4,8,7,6 %N A256127 Decimal expansion of the second Malmsten integral: Integer_{x >= 1} log(log(x))/(1 + x + x^2) dx, negated. %H A256127 G. C. Greubel, <a href="/A256127/b256127.txt">Table of n, a(n) for n = 0..5000</a> %H A256127 Iaroslav V. Blagouchine, <a href="http://dx.doi.org/10.1007/s11139-013-9528-5">Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results</a>, The Ramanujan Journal, Volume 35, Issue 1, pp. 21-110, 2014, DOI: 10.1007/s11139-013-9528-5. <a href="http://www.researchgate.net/publication/257381156_Rediscovery_of_Malmsten%27s_integrals_their_evaluation_by_contour_integration_methods_and_some_related_results">PDF file</a> %H A256127 Wikipedia, <a href="http://en.wikipedia.org/wiki/Carl_Johan_Malmsten">Carl Malmsten</a> %F A256127 Equals Integral_{x=0..1} log(log(1/x))/(1 + x + x^2) dx. %F A256127 Equals Integral_{x>=0} log(x)/(1 + 2*cosh(x)) dx. %F A256127 Equals Pi*(8*log(2*Pi) - 3*log(3) - 12*log(Gamma(1/3)))/(6*sqrt(3)). %e A256127 -0.12632148170620903636522675325320239184424430946528... %p A256127 evalf(Pi*(8*log(2*Pi) - 3*log(3) - 12*log(GAMMA(1/3)))/(6*sqrt(3)),120); # _Vaclav Kotesovec_, Mar 17 2015 %t A256127 RealDigits[Integrate[Log[Log[1/x]]/(1 + x + x^2), {x, 0, 1}], 10, 100][[1]] (* _Alonso del Arte_, Mar 16 2015 *) %t A256127 RealDigits[Pi*(8*Log[2*Pi] - 3*Log[3] - 12*Log[Gamma[1/3]])/(6*Sqrt[3]),10,105][[1]] (* _Vaclav Kotesovec_, Mar 17 2015 *) %o A256127 (PARI) Pi*(8*log(2*Pi) - 3*log(3) - 12*log(gamma(1/3)))/(6*sqrt(3)) \\ _Michel Marcus_, Mar 18 2015 %o A256127 (PARI) intnum(x=0, 1, log(log(1/x))/(1 + x + x^2)) %o A256127 (PARI) intnum(x=1, oo, log(log(x))/(1 + x + x^2)) %o A256127 (PARI) intnum(x=0, [oo, 1], log(x)/(1 + 2*cosh(x))) \\ _Gheorghe Coserea_, Sep 26 2018 %Y A256127 Cf. A115252 (first Malmsten integral), A256128 (third Malmsten integral) , A256129 (fourth Malmsten integral), A073005 (Gamma(1/3)), A256165 (log(Gamma(1/3))), A061444 (log(2*Pi)), A002391 (log 3), A002194 (sqrt 3). %K A256127 nonn,cons %O A256127 0,2 %A A256127 _Iaroslav V. Blagouchine_, Mar 15 2015