A256132 Number of ways to write n as w*(3w+1)/2 + x*(3x-1)/2 + y*(3y-1)/2 + z*(3z-1)/2, where w,x,y,z are nonnegative integers with x <= y <= z.
1, 1, 2, 2, 1, 2, 1, 3, 2, 2, 2, 1, 3, 3, 3, 3, 2, 4, 3, 2, 3, 2, 4, 1, 5, 4, 4, 4, 3, 6, 3, 4, 4, 2, 3, 3, 5, 6, 4, 6, 4, 5, 5, 6, 4, 3, 4, 6, 5, 4, 6, 7, 6, 5, 6, 5, 4, 4, 7, 7, 6, 5, 7, 8, 8, 4, 5, 5, 6, 4, 6, 9, 8, 6, 6, 9, 6, 9, 8, 8, 6, 6, 10, 6, 7, 9, 6, 8, 5, 9, 6, 5, 10, 8, 11, 6, 7, 10, 7, 9, 8
Offset: 0
Keywords
Examples
a(4) = 1 since 4 = 1*(3*1+1)/2 + 0*(3*0-1)/2 + 1*(3*1-1)/2 + 1*(3*1-1)/2. a(11) = 1 since 11 = 0*(3*0+1)/2 + 1*(3*1-1)/2 + 2*(3*2-1)/2 + 2*(3*2-1)/2. a(23) = 1 since 23 = 0*(3*0+1)/2 + 0*(3*0-1)/2 + 1*(3*1-1)/2 + 4*(3*4-1)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..6000
- Zhi-Wei Sun, A result similar to Lagrange's theorem, arXiv:1503.03743 [math.NT], 2015.
Programs
-
Mathematica
GenPen[n_]:=IntegerQ[Sqrt[24n+1]]&&Mod[Sqrt[24n+1],6]==1 Do[r=0;Do[If[GenPen[n-x(3x-1)/2-y(3y-1)/2-z(3z-1)/2],r=r+1],{x,0,(Sqrt[8n+1]+1)/6},{y,x,(Sqrt[12(n-x(3x-1)/2)+1]+1)/6}, {z,y,(Sqrt[24(n-x(3x-1)/2-y(3y-1)/2)+1]+1)/6}];Print[n," ",r];Continue,{n,0,100}]
Comments