cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256133 Numbers that have unique expansion with minimal digit sum in terms of Fibonacci numbers F_k (k > 1).

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 15, 18, 20, 21, 22, 23, 24, 29, 30, 32, 34, 35, 36, 37, 39, 41, 47, 48, 49, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 76, 77, 78, 79, 84, 85, 87, 89, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103, 104, 107, 109, 123, 124, 125, 126
Offset: 1

Views

Author

Patrick Okolo Edeogu, Jul 10 2015

Keywords

Comments

This sequence shows that the "proper digital expansion" mentioned in the introduction to the paper by Drmota and Gajdosik (see Links) is not unique.
This sequence consists of all positive integers that have Zeckendorf expansions not containing any ...1001... and not ending in ...101. Example: 20 is in and it has 20 = 13 + 5 + 2 with Zeckendorf expansion 101010, while 19 is not in and has 19 = 13 + 5 + 1 with Zeckendorf expansion 101001. - Thomas Bier, Oct 09 2015

Examples

			7 = 5 + 2 is unique with respect to its minimal digit sum 1 + 1 = 2.
But 10 = 8 + 2 = 5 + 5 is not unique with respect to its minimal digit sum 1 + 1 = 2.
		

Crossrefs

Cf. A000045.

Programs

  • Maple
    x0:=0: x1:=1: ML:=[]: L:=[]: mes:=0:  for r from 2 to 14 do: z:=x1+x0: x0:=x1: x1:=z:  rj:=12: L:=[op(L),z]: ML:=[z,op(ML)]: od: XL:=[]: for m from 1 to 400 do:  NL:=[]: n:=m: for j from 12 to 1 by -1 do: if L[j+1]>n and L[j]-1 < n then NL:=[op(NL),j]: n:=n-L[j]: fi: od: eps:=0: nx:=nops(NL):  for j from 1 to nx-1 do: if NL[j]-NL[j+1]=3 then eps:=1: fi: if NL[nx-1]-NL[nx]=2 and NL[nx]=1 then eps:=1: fi:od: if eps=0 then XL:=[op(XL),m]: fi: od: print(XL);