A256133 Numbers that have unique expansion with minimal digit sum in terms of Fibonacci numbers F_k (k > 1).
1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 15, 18, 20, 21, 22, 23, 24, 29, 30, 32, 34, 35, 36, 37, 39, 41, 47, 48, 49, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 76, 77, 78, 79, 84, 85, 87, 89, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103, 104, 107, 109, 123, 124, 125, 126
Offset: 1
Keywords
Examples
7 = 5 + 2 is unique with respect to its minimal digit sum 1 + 1 = 2. But 10 = 8 + 2 = 5 + 5 is not unique with respect to its minimal digit sum 1 + 1 = 2.
Links
- Patrick Okolo Edeogu, Table of n, a(n) for n = 1..141
- M. Drmota and M. Gajdosik, The parity of the sum of digits function of generalized Zeckendorf expansions, The Fibonacci Quarterly, 36:1 (1988), pp. 3-19.
Crossrefs
Cf. A000045.
Programs
-
Maple
x0:=0: x1:=1: ML:=[]: L:=[]: mes:=0: for r from 2 to 14 do: z:=x1+x0: x0:=x1: x1:=z: rj:=12: L:=[op(L),z]: ML:=[z,op(ML)]: od: XL:=[]: for m from 1 to 400 do: NL:=[]: n:=m: for j from 12 to 1 by -1 do: if L[j+1]>n and L[j]-1 < n then NL:=[op(NL),j]: n:=n-L[j]: fi: od: eps:=0: nx:=nops(NL): for j from 1 to nx-1 do: if NL[j]-NL[j+1]=3 then eps:=1: fi: if NL[nx-1]-NL[nx]=2 and NL[nx]=1 then eps:=1: fi:od: if eps=0 then XL:=[op(XL),m]: fi: od: print(XL);
Comments