cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256134 The absolute value of a(n) is the length of the n-th line segment of a labyrinth related to odd nonprimes (A014076) and odd primes (A065091) (see Comments lines for definition).

This page as a plain text file.
%I A256134 #48 Dec 18 2015 14:46:17
%S A256134 1,1,1,-1,-2,-2,1,3,4,4,5,5,5,-1,-6,-7,-7,-8,-8,-8,1,9,10,10,11,11,12,
%T A256134 12,12,-1,-13,-14,-14,-14,1,15,16,16,16,-1,-17,-18,-18,-19,-19,-20,
%U A256134 -20,-20,1,21,22,22,23,23,24,24,24,-1,-25,-26,-26,-27,-27,-27,1,28,29,29,29,-1,-30,-31,-31,-31,1,32,33,33,34
%N A256134 The absolute value of a(n) is the length of the n-th line segment of a labyrinth related to odd nonprimes (A014076) and odd primes (A065091) (see Comments lines for definition).
%C A256134 In order to construct this sequence we use the following rules:
%C A256134 We start with the diagram described in A256253 in which the regions in direction S-W represent the odd nonprimes (A014076) and the regions in direction N-E represent the odd primes (A065091).
%C A256134 The diagram must be modified such that the new diagram contains only one region of infinite length as shown in Example section, figure 1.
%C A256134 The absolute value of a(n) is the length of the n-th line segment in the walk into the mentioned diagram as shown in Example section, figure 2.
%C A256134 The sign of a(n) is the same as the sign of the precedent term in the sequence whose absolute value is 1.
%C A256134 The positive value of a(n) means that the line segment rotates in the direction of the clockwise.
%C A256134 The negative value of a(n) means that the line segment rotates counter to the clockwise.
%C A256134 A line segment of length x can be replaced be x toothpicks with nodes between their endpoints.
%C A256134 Also the sequence can be interpreted as an irregular array T(j,k), see Formula section and Example section.
%H A256134 Wikipedia, <a href="https://en.wikipedia.org/wiki/Labyrinth">Labyrinth</a>
%F A256134 Written as an irregular array we have that:
%F A256134 T(1,3) = 1.
%F A256134 And for j > 1:
%F A256134 T(j,1) = m*(j-1), where m is the precedent term in the sequence whose absolute value is 1.
%F A256134 T(j,2) = T(j,1), if 2*j-1 is an odd prime and 2*j+1 is an odd nonprime or if 2*j-1 is an odd nonprime and 2*j+1 is an odd prime.
%F A256134 T(j,3) = (-1)*m, if T(j,1) = T(j,2), where m is the precedent term in the sequence whose absolute value is 1, otherwise T(j,3) does not exist.
%e A256134 Written as an irregular array T(j,k) the sequence begins:
%e A256134   -----------------------
%e A256134    j/k:     1    2    3
%e A256134   -----------------------
%e A256134    1:                 1;
%e A256134    2:       1,   1,  -1;
%e A256134    3:      -2,  -2,   1;
%e A256134    4:       3,   4;
%e A256134    5:       4,   5;
%e A256134    6:       5,   5,  -1;
%e A256134    7:      -6,  -7;
%e A256134    8:      -7,  -8;
%e A256134    9:      -8,  -8,   1;
%e A256134   10:       9,  10;
%e A256134   11:      10,  11;
%e A256134   12:      11,  12;
%e A256134   13:      12,  12,  -1;
%e A256134   14:     -13, -14;
%e A256134   15:     -14, -14,   1;
%e A256134   16:      15,  16;
%e A256134   17:      16,  16;  -1;
%e A256134   18:     -17, -18;
%e A256134   19:     -18, -19:
%e A256134   20:     -19, -20;
%e A256134   ...
%e A256134 .           _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
%e A256134 .          |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |   37
%e A256134 .          | |   |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |   31
%e A256134 .          | | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _  | | |   29
%e A256134 .          | | | |   |  _ _ _ _ _ _ _ _ _ _  | | | |   23
%e A256134 .          | | | | | | |  _ _ _ _ _ _ _ _  | | | | |   19
%e A256134 .          | | | | | | |_ _ _ _ _ _ _ _  | | | | | |   17
%e A256134 .          | | | | | | |  _ _ _ _ _ _  | | | | | | |   13
%e A256134 .          | | | | | | | |  _ _ _ _  | | | | | | | |   11
%e A256134 .          | | | | | | | | |  _ _  | | | | | | | | |    7
%e A256134 .          | | | | | | | | |_ _  | | | | | | | | | |    5
%e A256134 .  A014076 | | | | | | | | |   | | | | | | | | | | |    3
%e A256134 .     1    | | | | | | | | |_|_ _| | | | | | | | | | A065091
%e A256134 .     9    | | | | | | | |_ _ _ _ _|_ _| | | | | | |
%e A256134 .    15    | | | | | | |_ _ _ _ _ _ _ _ _| | | | | |
%e A256134 .    21    | | | | | |_ _ _ _ _ _ _ _ _ _ _| | | | |
%e A256134 .    25    | | | | |_ _ _ _ _ _ _ _ _ _ _ _ _| | | |
%e A256134 .    27    | | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
%e A256134 .    33    | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
%e A256134 .    35    | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
%e A256134 .    39    |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
%e A256134 .
%e A256134 Figure 1. Here the diagram described in A256253 was modified such that the new diagram contains only one region of infinite length.
%e A256134 .
%e A256134 Illustration of initial terms (n = 1..46):
%e A256134 .            _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
%e A256134 .           |  _   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
%e A256134 .           | | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _  | |
%e A256134 .           | | |  _   _ _ _ _ _ _ _ _ _ _ _  | | |
%e A256134 .           | | | | | |  _ _ _ _ _ _ _ _ _  | | | |
%e A256134 .           | | | | | | |_ _ _ _ _ _ _ _  | | | | |
%e A256134 .           | | | | | |  _ _ _ _ _ _ _  | | | | | |
%e A256134 .           | | | | | | |  _ _ _ _ _  | | | | | | |
%e A256134 .           | | | | | | | |  _ _ _  | | | | | | | |
%e A256134 .           | | | | | | | | |_ _  | | | | | | | | |
%e A256134 .           | | | | | | | |  _  | | | | | | | | | |
%e A256134 .           | | | | | | | | | |_| | | | | | | | | |
%e A256134 .           | | | | | | | |_ _ _ _| |_| | | | | | |
%e A256134 .           | | | | | | |_ _ _ _ _ _ _ _| | | | | |
%e A256134 .           | | | | | |_ _ _ _ _ _ _ _ _ _| | | | |
%e A256134 .           | | | | |_ _ _ _ _ _ _ _ _ _ _ _| | | |
%e A256134 .           | | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
%e A256134 .           | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
%e A256134 .           | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|       Labyrinth
%e A256134 .           |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  <-- entrance
%e A256134 .
%e A256134 Figure 2. Interpreted as a sequence, the absolute value of a(n) is the length of the n-th line segment starting from the center of the structure. The figure shows the first 46 line segments. Note that the structure looks like a labyrinth.
%Y A256134 Cf. A005408, A014076, A065091, A256253.
%K A256134 sign,tabf,walk,look
%O A256134 1,5
%A A256134 _Omar E. Pol_, Mar 31 2015