cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256161 Triangle of allowable Stirling numbers of the second kind a(n,k).

This page as a plain text file.
%I A256161 #28 Feb 10 2020 10:41:42
%S A256161 1,1,1,1,2,1,1,3,4,1,1,4,11,6,1,1,5,26,23,9,1,1,6,57,72,50,12,1,1,7,
%T A256161 120,201,222,86,16,1,1,8,247,522,867,480,150,20,1,1,9,502,1291,3123,
%U A256161 2307,1080,230,25,1,1,10,1013,3084,10660,10044,6627,2000,355,30,1
%N A256161 Triangle of allowable Stirling numbers of the second kind a(n,k).
%C A256161 Row sums = A007476 starting (1, 2, 4, 9, 23, 65, 199, 654, 2296, 8569, ...).
%C A256161 a(n,k) counts restricted growth words of length n in the letters {1, ..., k} where every even entry appears exactly once.
%H A256161 Yue Cai and Margaret Readdy, <a href="http://arxiv.org/abs/1506.03249">Negative q-Stirling numbers</a>, arXiv:1506.03249 [math.CO], 2015.
%F A256161 a(n,k) = a(n-1,k-1) + ceiling(k/2)*a(n-1,k) for n >= 1 and 1 <= k <= n with boundary conditions a(n,0) = KroneckerDelta[n,0].
%F A256161 a(n,2) = n-1.
%F A256161 a(n,n-1) = floor(n/2)*ceiling(n/2).
%e A256161 a(4,1) = 1 via 1111;
%e A256161 a(4,2) = 3 via 1211, 1121, 1112;
%e A256161 a(4,3) = 4 via 1213, 1231, 1233, 1123;
%e A256161 a(4,4) = 1 via 1234.
%e A256161 Triangle starts:
%e A256161   1;
%e A256161   1,  1;
%e A256161   1,  2,  1;
%e A256161   1,  3,  4,  1;
%e A256161   1,  4, 11,  6,  1;
%e A256161   ...
%t A256161 a[_, 1] = a[n_, n_] = 1;
%t A256161 a[n_, k_] := a[n, k] = a[n-1, k-1] + Ceiling[k/2] a[n-1, k];
%t A256161 Table[a[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Dec 15 2018 *)
%Y A256161 Cf. A007476 (row sums), A246118 (essentially the same triangle).
%K A256161 nonn,tabl
%O A256161 1,5
%A A256161 _Margaret A. Readdy_, Mar 16 2015