cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256162 Positive integers a(n) such that number of digits in decimal expansion of a(n)^a(n) is divisible by a(n).

This page as a plain text file.
%I A256162 #35 Sep 08 2022 08:46:11
%S A256162 1,8,9,98,99,998,999,9998,9999,99998,99999,999998,999999,9999998,
%T A256162 9999999,99999998,99999999,999999998,999999999,9999999998,9999999999,
%U A256162 99999999998,99999999999,999999999998,999999999999,9999999999998,9999999999999
%N A256162 Positive integers a(n) such that number of digits in decimal expansion of a(n)^a(n) is divisible by a(n).
%C A256162 A055642(a(n)^a(n)) = A055642(a(n))*a(n).
%C A256162 1 + floor(log_10(a(n)^a(n))) = a(n)*(1 + floor(log_10(a(n)))).
%H A256162 Bui Quang Tuan, <a href="/A256162/b256162.txt">Table of n, a(n) for n = 1..101</a>
%F A256162 a(n) = 10^floor(n/2) - 2*floor(n/2) + n - 2 = 10^floor(n/2)-(1+(-1)^n)/2 - 1 for n>1, a(1) = 1.
%e A256162 1^1 = 1 has 1 digit, and 1 is divisible by 1.
%e A256162 8^8 = 16777216 has 8 digits, and 8 is divisible by 8.
%e A256162 98^98 has 196 digits, and 196 is divisible by 98.
%t A256162 Select[Range@10000, Mod[IntegerLength[#^#], #] == 0 &] (* _Michael De Vlieger_, Mar 17 2015 *)
%t A256162 Join[{1}, Table[(10^Floor[n/2] - 2 Floor[n/2] + n - 2), {n, 2, 30}]] (* _Vincenzo Librandi_, Mar 18 2015 *)
%o A256162 (PARI) isok(n) = !(#digits(n^n) % n); \\ _Michel Marcus_, Mar 17 2015
%o A256162 (Magma) [1] cat [10^Floor((n+1)/2)-2*Floor((n+1)/2)+n-1: n in [1..30]]; // _Vincenzo Librandi_, Mar 18 2015
%Y A256162 Cf. A055642 (Number of digits in decimal expansion of n).
%K A256162 nonn,base
%O A256162 1,2
%A A256162 _Bui Quang Tuan_, Mar 17 2015