This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256168 #17 Aug 05 2015 04:06:27 %S A256168 1,-2,1,-1,-9,-59,-474,-4560,-50364,-625385,-8622658,-130751886, %T A256168 -2163331779,-38793751015,-749691306018,-15535914341831, %U A256168 -343749787006758,-8089725377931547,-201801866906374263,-5319643146604299835,-147774950436327236681 %N A256168 Coefficients in asymptotic expansion of sequence A052186. %C A256168 For k > 2 is a(k) negative. %H A256168 Vaclav Kotesovec, <a href="/A256168/b256168.txt">Table of n, a(n) for n = 0..394</a> %H A256168 Richard J. Martin, and Michael J. Kearney, <a href="http://dx.doi.org/10.1007/s00493-014-3183-3">Integral representation of certain combinatorial recurrences</a>, Combinatorica: 35:3 (2015), 309-315. %F A256168 a(k) ~ -(k-1)! / (log(2))^k. %e A256168 A052186(n) / n! ~ 1 - 2/n + 1/n^2 - 1/n^3 - 9/n^4 - 59/n^5 - 474/n^6 - ... %t A256168 nmax = 30; b = CoefficientList[Assuming[Element[x, Reals], Series[E^(2/x) / (ExpIntegralEi[1/x] + E^(1/x))^2, {x, 0, nmax}]], x]; Flatten[{1, Table[Sum[b[[k+1]]*StirlingS2[n-1, k-1], {k, 1, n}], {n, 1, nmax}]}] (* _Vaclav Kotesovec_, Aug 03 2015 *) %Y A256168 Cf. A052186, A260491, A260503, A260530, A260532, A260578. %K A256168 sign %O A256168 0,2 %A A256168 _Vaclav Kotesovec_, Mar 17 2015