A256170 Irregular triangle where the n-th row contains the binary representations of the factors of the member of GF(2)[x] whose binary representation is n.
2, 3, 2, 2, 3, 3, 2, 3, 7, 2, 2, 2, 3, 7, 2, 3, 3, 11, 2, 2, 3, 13, 2, 7, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 7, 19, 2, 2, 3, 3, 7, 7, 2, 11, 3, 13, 2, 2, 2, 3, 25, 2, 13, 3, 3, 7, 2, 2, 7, 3, 11, 2, 3, 3, 3, 31, 2, 2, 2, 2, 2, 3, 31
Offset: 2
Examples
9 is 1001 in binary, so it corresponds to x^3 + 1 in GF(2)[x]. This factors as (x+1) * (x^2+x+1), which have binary representations 3 and 7; so row 9 is 3, 7. The triangle starts: [empty row for n=1] 2 3 2, 2, 3, 3 2, 3 7 2, 2, 2 3, 7 2, 3, 3 11 2, 2, 3 13 2, 7 3, 3, 3
Programs
-
Maple
f:= proc(n) local L,P,R; L:= convert(n,base,2); P:= add(L[i]*X^(i-1),i=1..nops(L)); R:= Factors(P) mod 2; op(sort([seq(eval(r[1],X=2)$r[2], r=R[2])])); end proc: seq(f(n), n=1..50); # Robert Israel, Jun 07 2015
-
PARI
arow(n)=my(fm=factor(Pol(binary(n))*Mod(1,2)),x=2,np,r,k);for(k=1,(np=#fm~),fm[k,1]=eval(lift(fm[k,1])));r=vector(sum(j=1,np,fm[j,2]));k=0;for(j=1,np,for(i=1,fm[j,2],r[k++]=fm[j,1]));r