This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256179 #23 Dec 23 2024 14:53:44 %S A256179 2,3,4,8,9,16,27,81,256,512,6561,19683,65536,43046721,134217728, %T A256179 7625597484987,2417851639229258349412352, %U A256179 443426488243037769948249630619149892803,115792089237316195423570985008687907853269984665640564039457584007913129639936 %N A256179 Sequence of power towers in ascending order, using all possible permutations of 2's and 3's. %C A256179 a(n) is found by treating the digits of A248907(n) as power towers, so the sequence starts 2, 3, 2^2=4, 2^3=8, 3^2=9, 2^(2^2)=16, 3^3=27, 3^(2^2)=81, 2^(2^3)=256... %H A256179 Pontus von Brömssen, <a href="/A256179/b256179.txt">Table of n, a(n) for n = 1..22</a> %H A256179 Vladimir Reshetnikov, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2015-March/014595.html">2-3 sequence puzzle</a>, SeqFan list, Mar 18 2015. %F A256179 A256179 = A256229 o A248907 = A256229 o A032810 o A185969, i.e., a(n) = A256229(A248907(n)) = A256229(A032810(A185969(n))). %F A256179 Recurrence: a(1)=2, a(2)=3, a(3)=2^2, a(4)=2^3, a(5)=3^2, a(6)=2^(2^2), a(7)=3^3, a(8)=3^(2^2), a(9)=2^(2^3), a(10)=2^(3^2), a(11)=3^(2^3), a(12)=3^(3^2); and for n>6, a(2n)=3^a(n-1), a(2n-1)=2^a(n-1). - _Vladimir Reshetnikov_, Mar 19 2015 %e A256179 a(12) = 19683 because A248907(12) = 332, and 3^(3^2) = 19683. %e A256179 a(23) = 2^3^2^3 = 11423...73952 (1976 digits), because A248907(23) = 2323. %o A256179 (PARI) A256179(n)=A256229(A248907[n]) \\ where A248907 is assumed to be defined as vector. - _M. F. Hasler_, Mar 19 2015 %Y A256179 Cf. A032810, A075877, A185969, A248907, A256229. %K A256179 nonn %O A256179 1,1 %A A256179 _Bob Selcoe_, Mar 18 2015 %E A256179 More terms from _M. F. Hasler_, Mar 19 2015