cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256184 First of two variations by Per Nørgård of his "infinity sequence", cf. A004718: u(0) = 0; u(3*n) = -u(n); u(3*n+1) = u(n) - 2; u(3*n+2) = u(n) - 1.

This page as a plain text file.
%I A256184 #20 Sep 02 2021 08:19:16
%S A256184 0,-2,-1,2,-4,-3,1,-3,-2,-2,0,1,4,-6,-5,3,-5,-4,-1,-1,0,3,-5,-4,2,-4,
%T A256184 -3,2,-4,-3,0,-2,-1,-1,-1,0,-4,2,3,6,-8,-7,5,-7,-6,-3,1,2,5,-7,-6,4,
%U A256184 -6,-5,1,-3,-2,1,-3,-2,0,-2,-1,-3,1,2,5,-7,-6,4,-6,-5
%N A256184 First of two variations by Per Nørgård of his "infinity sequence", cf. A004718: u(0) = 0; u(3*n) = -u(n); u(3*n+1) = u(n) - 2; u(3*n+2) = u(n) - 1.
%C A256184 Per Nørgård's surname is also written as Noergaard.
%C A256184 Not squarefree in contrast to A004718, first repetition of order 3: a(32) = a(33) = a(34) = -1, see link.
%H A256184 Reinhard Zumkeller, <a href="/A256184/b256184.txt">Table of n, a(n) for n = 0..10000</a>
%H A256184 Yu Hin (Gary) Au, Christopher Drexler-Lemire, and Jeffrey Shallit, <a href="https://doi.org/10.1080/17459737.2017.1299807">Notes and note pairs in Norgard's infinity series</a>, J. of Mathematics and Music (2017).
%H A256184 Christopher Drexler-Lemire and Jeffrey Shallit, <a href="http://arxiv.org/abs/1402.3091">Notes and Note-Pairs in Noergaard's Infinity Series</a>, arXiv:1402.3091 [math.CO], 2014, page 13.
%o A256184 (Haskell)
%o A256184 a256184 n = a256184_list !! n
%o A256184 a256184_list = 0 : concat (transpose [map (subtract 2) a256184_list,
%o A256184                                       map (subtract 1) a256184_list,
%o A256184                                       map negate $ tail a256184_list])
%o A256184 (Python)
%o A256184 from functools import lru_cache
%o A256184 @lru_cache(maxsize=None)
%o A256184 def a(n): return 0 if n == 0 else (a(n//3) - (3-n%3)) if n%3 else -a(n//3)
%o A256184 print([a(n) for n in range(72)]) # _Michael S. Branicky_, Sep 02 2021
%Y A256184 Cf. A004718, A256185, A087808, A085144, A255723.
%K A256184 sign
%O A256184 0,2
%A A256184 _Reinhard Zumkeller_, Mar 19 2015