cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256185 Second of two variations by Per Nørgård of his "infinity sequence", cf. A004718: v(0) = 0; v(3*n) = -v(n); v(3*n+1) = v(n) - 3; v(3*n+2) = -2 - v(n).

This page as a plain text file.
%I A256185 #6 Oct 06 2017 11:40:16
%S A256185 0,-3,-2,3,-6,1,2,-5,0,-3,0,-5,6,-9,4,-1,-2,-3,-2,-1,-4,5,-8,3,0,-3,
%T A256185 -2,3,-6,1,0,-3,-2,5,-8,3,-6,3,-8,9,-12,7,-4,1,-6,1,-4,-1,2,-5,0,3,-6,
%U A256185 1,2,-5,0,1,-4,-1,4,-7,2,-5,2,-7,8,-11,6,-3,0,-5,0
%N A256185 Second of two variations by Per Nørgård of his "infinity sequence", cf. A004718: v(0) = 0; v(3*n) = -v(n); v(3*n+1) = v(n) - 3; v(3*n+2) = -2 - v(n).
%C A256185 Per Nørgård's surname is also written as Noergaard;
%C A256185 for all odd j exists k such that abs(a(k+1)-a(k)) = j, in contrast to A004718, where this holds also for even j > 0, see link.
%D A256185 Yu Hin (Gary) Au, Christopher Drexler-Lemire, and Jeffrey Shallit, "Notes and note pairs in Norgard's infinity series", J. of Mathematics and Music (2017). DOI:  http://dx.doi.org/10.1080/17459737.2017.1299807
%H A256185 Reinhard Zumkeller, <a href="/A256185/b256185.txt">Table of n, a(n) for n = 0..10000</a>
%H A256185 Christopher Drexler-Lemire, Jeffrey Shallit, <a href="http://arxiv.org/abs/1402.3091">Notes and Note-Pairs in Noergaard's Infinity Series</a>, arXiv:1402.3091 [math.CO], page 13
%o A256185 (Haskell)
%o A256185 a256185 n = a256185_list !! n
%o A256185 a256185_list = 0 : concat (transpose [map (subtract 3) a256185_list,
%o A256185                                       map (-2 -) a256185_list,
%o A256185                                       map negate $ tail a256185_list])
%Y A256185 Cf. A004718, A256184, A087808, A085144, A255723.
%K A256185 sign
%O A256185 0,2
%A A256185 _Reinhard Zumkeller_, Mar 19 2015