This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256193 #40 Feb 16 2025 08:33:25 %S A256193 1,1,1,2,3,1,3,6,4,1,5,12,11,5,1,7,20,24,16,6,1,11,35,49,41,22,7,1,15, %T A256193 54,89,91,63,29,8,1,22,86,158,186,155,92,37,9,1,30,128,262,351,342, %U A256193 247,129,46,10,1,42,192,428,635,700,590,376,175,56,11,1 %N A256193 Number T(n,k) of partitions of n into two sorts of parts having exactly k parts of the second sort; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A256193 Alois P. Heinz, <a href="/A256193/b256193.txt">Rows n = 0..140, flattened</a> %H A256193 William Dugan, Sam Glennon, Paul E. Gunnells, and Einar Steingrimsson, <a href="https://arxiv.org/abs/1702.02446">Tiered trees, weights, and q-Eulerian numbers</a>, arXiv:1702.02446 [math.CO], Feb 2017. %H A256193 Emmy Huang and Ray Tang, <a href="https://arxiv.org/abs/2310.14385">Minimum Decomposition on Maxmin Trees</a>, arXiv:2310.14385 [math.CO], 2023. %H A256193 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/q-PochhammerSymbol.html">q-Pochhammer Symbol</a> %H A256193 Wikipedia, <a href="https://en.wikipedia.org/wiki/Q-Pochhammer_symbol">q-Pochhammer symbol</a> %F A256193 T(n,k) = [x^k] [q^(n-k)] 1/(q+x; q)_inf = [x^k] [q^(n-k)] 1/(q+x; q)_n, where (x; q)_n is the q-Pochhammer symbol. - _Vladimir Reshetnikov_, Nov 22 2016 %F A256193 Sum_{k=0..n} k * T(n,k) = A278464(n). - _Alois P. Heinz_, Nov 22 2016 %e A256193 T(3,0) = 3: 111, 21, 3. %e A256193 T(3,1) = 6: 1'11, 11'1, 111', 2'1, 21', 3'. %e A256193 T(3,2) = 4: 1'1'1, 1'11', 11'1', 2'1'. %e A256193 T(3,3) = 1: 1'1'1'. %e A256193 Triangle T(n,k) begins: %e A256193 1; %e A256193 1, 1; %e A256193 2, 3, 1; %e A256193 3, 6, 4, 1; %e A256193 5, 12, 11, 5, 1; %e A256193 7, 20, 24, 16, 6, 1; %e A256193 11, 35, 49, 41, 22, 7, 1; %e A256193 15, 54, 89, 91, 63, 29, 8, 1; %e A256193 22, 86, 158, 186, 155, 92, 37, 9, 1; %e A256193 30, 128, 262, 351, 342, 247, 129, 46, 10, 1; %e A256193 42, 192, 428, 635, 700, 590, 376, 175, 56, 11, 1; %e A256193 ... %p A256193 b:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A256193 `if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t* %p A256193 binomial(j, t), t=0..j), j=0..n/i)))) %p A256193 end: %p A256193 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): %p A256193 seq(T(n), n=0..12); %t A256193 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]* Sum[x^t*Binomial[j, t], {t, 0, j}], {j, 0, n/i}]]]]; T[n_] := Function[ p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Feb 22 2016, after _Alois P. Heinz_ *) %t A256193 Table[SeriesCoefficient[FunctionExpand[1/QPochhammer[q + x, q, n]], {q, 0, n - k}, {x, 0, k}], {n, 0, 10}, {k, 0, n}] // Column (* _Vladimir Reshetnikov_, Nov 22 2016 *) %Y A256193 Column k=0-10 gives: A000041, A006128, A258472, A258473, A258474, A258475, A258476, A258477, A258478, A258479, A258480. %Y A256193 T(2n,n) gives A258471. %Y A256193 Row sums give A070933. %Y A256193 Cf. A278464. %K A256193 nonn,tabl %O A256193 0,4 %A A256193 _Alois P. Heinz_, Mar 19 2015