A256195 Number of permutations in S_n that avoid the pattern 25314.
1, 1, 2, 6, 24, 119, 694, 4578, 33184, 258757, 2136978, 18478134, 165857600, 1535336290, 14584260700, 141603589300, 1400942032152, 14087464765300, 143689133196008, 1484090443264936, 15499968503875136, 163501005435759505, 1740170514634463426, 18671118911254798454
Offset: 0
Keywords
Links
- Anthony Guttmann, Table of n, a(n) for n = 0..26
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
Crossrefs
Programs
-
Mathematica
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p, lpat = Subsets[(n + 1) - Range[n], {Length[pat]}], psn = Permutations[Range[n]]}, For[i = 1, i <= Length[lpat], i++, p = lpat[[i]]; AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]]; ]; n! - Length[Union[Flatten[lseq, 1]]]]; Table[avoid[n, {2, 5, 3, 1, 4}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
Extensions
a(14)-a(16) from Bert Dobbelaere, Mar 18 2021
More terms from Anthony Guttmann, Sep 29 2021