A256197 Number of permutations in S_n that avoid the pattern 35214.
1, 1, 2, 6, 24, 119, 694, 4579, 33218, 259483, 2149558, 18672277, 168648090, 1573625606, 15093309024, 148223240022, 1485673163882, 15159644212775, 157142812302992, 1651865171372967, 17582693993265148, 189269329080075275, 2058215511081891400, 22589841589522026553
Offset: 0
Keywords
Links
- Anthony Guttmann, Table of n, a(n) for n = 0..26
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
Crossrefs
Programs
-
Mathematica
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p, lpat = Subsets[(n + 1) - Range[n], {Length[pat]}], psn = Permutations[Range[n]]}, For[i = 1, i <= Length[lpat], i++, p = lpat[[i]]; AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]]; ]; n! - Length[Union[Flatten[lseq, 1]]]]; Table[avoid[n, {3, 5, 2, 1, 4}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
Extensions
More terms from Anthony Guttmann, Sep 29 2021