This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256227 #21 Jan 01 2024 12:24:02 %S A256227 20,30,50,70,101,103,107,109,110,130,170,190,200,203,209,230,290,300, %T A256227 301,307,310,370,401,403,407,410,430,470,500,503,509,530,590,601,607, %U A256227 610,670,700,701,703,709,710,730,790,803,809,830,890,907,970,1001,1003,1007,1009,1010,1013,1027,1030 %N A256227 Naught-y numbers (A011540) that after removing all zeros become zeroless primes (A038618). %H A256227 Harvey P. Dale, <a href="/A256227/b256227.txt">Table of n, a(n) for n = 1..1000</a> %p A256227 N:= 4: # to produce all terms with <= N digits %p A256227 ZLO:= proc(d) # produce set of d-digit odd zeroless numbers %p A256227 option remember; %p A256227 if d = 1 then {1,3,5,7,9} %p A256227 else %p A256227 map(t -> seq(t+x*10^(d-1),x=1..9), ZLO(d-1)) %p A256227 fi %p A256227 end proc: %p A256227 addzeros:= proc(x,d) # d-digit numbers formed by inserting 0's into x %p A256227 local L,n,R; %p A256227 L:= convert(x,base,10); %p A256227 n:= nops(L); %p A256227 R:= map(t -> [op(t),d], combinat[choose](d-1,n-1)); %p A256227 seq(add(L[i]*10^(r[i]-1),i=1..n), r = R); %p A256227 end proc: %p A256227 Z[1]:= {2,3,5,7}: %p A256227 for i from 2 to N-1 do Z[i]:= select(isprime,ZLO(i)) od: %p A256227 `union`(seq(seq(map(addzeros,Z[i],d), i=1..d-1),d=2..N)); %p A256227 # if using Maple 11 or earlier, uncomment the next line %p A256227 # sort(convert(%,list)); # _Robert Israel_, Mar 19 2015 %t A256227 ss={};Do[id=IntegerDigits[p];If[Min[id]<1&&PrimeQ[FromDigits[Delete[id,Position[id,0]]]],ss={ss,p}],{p,20,2000}];Flatten[ss] %t A256227 Select[Range[1200],DigitCount[#,10,0]>0&&PrimeQ[FromDigits[DeleteCases[ IntegerDigits[ #],0]]]&] (* _Harvey P. Dale_, Jan 01 2024 *) %o A256227 (PARI) is(n)=my(d=digits(n),e=select(x->x,d)); #e<#d && isprime(fromdigits(e)) \\ _Charles R Greathouse IV_, Mar 19 2015 %Y A256227 A256186 is the intersection of this sequence with A000040. %Y A256227 Cf. A011540, A038618, A056709. %K A256227 nonn,base %O A256227 1,1 %A A256227 _Charles R Greathouse IV_ and _Zak Seidov_, Mar 19 2015