This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256234 #84 Jul 03 2019 19:09:17 %S A256234 682775764735680,47184892811061120,50194833750826260, %T A256234 70151123608154420,76685404549625256,93295105984206480, %U A256234 94615738903617540,123483356772380760,141536742113504220,211283804186719200,214070508927033000 %N A256234 Magic constants of 4 X 4 pandiagonal magic squares composed of consecutive primes. %C A256234 a(1) = 682775764735680, minimal 4 X 4 pandiagonal magic squares of consecutive primes, see A245721. %H A256234 Dmitry Petukhov, <a href="/A256234/b256234.txt">Table of n, a(n) for n = 1..56</a> %H A256234 <a href="http://dxdy.ru/post988507.html#p988507">Discussion at the scientific forum dxdy.ru</a> (in Russian) %H A256234 <a href="http://stop.inferia.ru/">BOINC project</a> to search all up to 2^64 %H A256234 Natalia Makarova, <a href="/A256234/a256234_3.txt">Pandiagonal squares of order 4 composed of consecutive prime numbers</a> %H A256234 Natalia Makarova, <a href="/A256234/a256234_4.txt">Symmetrical 16-tuples of consecutive primes, components for pandiagonal squares of order 4, from J. Wroblewski</a> %e A256234 a(2) = 47184892811061120: %e A256234 11796223202765101 + %e A256234 0 148 232 336 %e A256234 268 300 36 112 %e A256234 126 22 358 210 %e A256234 322 246 90 58 %e A256234 a(5) = 76685404549625256: %e A256234 19171351137406219 + %e A256234 0 100 112 168 %e A256234 142 138 30 70 %e A256234 78 22 190 90 %e A256234 160 120 48 52 %Y A256234 Cf. A166113 (3 X 3 square), A245721. %K A256234 nonn %O A256234 1,1 %A A256234 _Dmitry Petukhov_, Mar 20 2015 %E A256234 a(5) added by _Dmitry Petukhov_, Mar 25 2015 %E A256234 a(6), a(7) from an anonymous participant in the project, added by _Natalia Makarova_, Jul 16 2015 %E A256234 a(8) from Alexander Andreyev, added by _Natalia Makarova_, Mar 29 2016 %E A256234 a(9) from Alexander Andreyev, a(10) from an anonymous participant in the project, a(11) from Denis Ivanov, added by _Natalia Makarova_, Jun 13 2016 %E A256234 a(12)-a(18) are confirmed by BOINC project, Mar 19 2017 %E A256234 a(19)-a(32) are confirmed by BOINC project, Apr 06 2017 %E A256234 a(33)-a(56) are confirmed and added by BOINC project, May 17 2017