This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256236 #55 Dec 28 2020 13:53:22 %S A256236 5,17,449,557,19601,132857,4486949,126664001,2363321449,5229752849, %T A256236 2486195039249,16250570614349,83322586961893,39699586259362801, %U A256236 8042447016668335049,449320365877347849601,4376479338174582826793 %N A256236 Smallest b > 1 such that the first n primes p (i.e., A000040(1)-A000040(n)) all satisfy b^(p-1) == 1 (mod p^2), i.e., smallest base b larger than 1 such that any member of the set of first n primes is a base-b Wieferich prime. %C A256236 There might be bases b where prime(n+1) is also a base-b Wieferich prime. This does not affect the membership of b in the sequence. %C A256236 Are there any terms such that a(n) = a(n+1)? %C A256236 Does b exist for all n? %C A256236 All currently known terms satisfy a(n) >= A255901(n). Are there any terms such that a(n) < A255901(n)? %C A256236 If it exists, a(12) > 6*10^12. - _Robert Price_, Oct 10 2019 %C A256236 a(n) <= prime(n)#^2+1 = A189409(n), since any prime p is a Wieferich prime in base k*p^2+1 for all k. - _Jens Kruse Andersen_, Dec 20 2020 %e A256236 Values of bases b and the values of first Wieferich primes p to base b: %e A256236 b | p %e A256236 ------------------------------------------------------------------------- %e A256236 5 | 2, 20771, 40487 ... %e A256236 17 | 2, 3, 46021, 48947 ... %e A256236 449 | 2, 3, 5, 1789 ... %e A256236 557 | 2, 3, 5, 7, 23, 39829 ... %e A256236 19601 | 2, 3, 5, 7, 11, 23, 47 ... %e A256236 132857 | 2, 3, 5, 7, 11, 13, 73, 257 ... %e A256236 4486949 | 2, 3, 5, 7, 11, 13, 17, 89, 197 ... %e A256236 126664001 | 2, 3, 5, 7, 11, 13, 17, 19, 101, 2789 ... %e A256236 2363321449 | 2, 3, 5, 7, 11, 13, 17, 19, 23 ... %e A256236 5229752849 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 881, 2246969 ... %e A256236 2486195039249 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 ... %t A256236 b = 2; Table[While[fnd = True; %t A256236 For[i = 1, i <= n, i++, %t A256236 p = Prime[i]; %t A256236 If[PowerMod[b, (p - 1), p^2] != 1 , fnd = False; Break[]]]; %t A256236 b++; ! fnd]; b - 1, {n, 5}] (* _Robert Price_, Oct 10 2019 *) %o A256236 (PARI) a(n) = my(v=primes(n)); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b))))) %Y A256236 Cf. A255901. %K A256236 nonn,hard,more %O A256236 1,1 %A A256236 _Felix Fröhlich_, Mar 25 2015 %E A256236 a(9)-a(11) from _Robert Price_, Oct 10 2019 %E A256236 a(12)-a(17) from _Jens Kruse Andersen_, Dec 28 2020