cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256236 Smallest b > 1 such that the first n primes p (i.e., A000040(1)-A000040(n)) all satisfy b^(p-1) == 1 (mod p^2), i.e., smallest base b larger than 1 such that any member of the set of first n primes is a base-b Wieferich prime.

This page as a plain text file.
%I A256236 #55 Dec 28 2020 13:53:22
%S A256236 5,17,449,557,19601,132857,4486949,126664001,2363321449,5229752849,
%T A256236 2486195039249,16250570614349,83322586961893,39699586259362801,
%U A256236 8042447016668335049,449320365877347849601,4376479338174582826793
%N A256236 Smallest b > 1 such that the first n primes p (i.e., A000040(1)-A000040(n)) all satisfy b^(p-1) == 1 (mod p^2), i.e., smallest base b larger than 1 such that any member of the set of first n primes is a base-b Wieferich prime.
%C A256236 There might be bases b where prime(n+1) is also a base-b Wieferich prime. This does not affect the membership of b in the sequence.
%C A256236 Are there any terms such that a(n) = a(n+1)?
%C A256236 Does b exist for all n?
%C A256236 All currently known terms satisfy a(n) >= A255901(n). Are there any terms such that a(n) < A255901(n)?
%C A256236 If it exists, a(12) > 6*10^12. - _Robert Price_, Oct 10 2019
%C A256236 a(n) <= prime(n)#^2+1 = A189409(n), since any prime p is a Wieferich prime in base k*p^2+1 for all k. - _Jens Kruse Andersen_, Dec 20 2020
%e A256236 Values of bases b and the values of first Wieferich primes p to base b:
%e A256236 b             | p
%e A256236 -------------------------------------------------------------------------
%e A256236 5             | 2, 20771, 40487 ...
%e A256236 17            | 2, 3, 46021, 48947 ...
%e A256236 449           | 2, 3, 5, 1789 ...
%e A256236 557           | 2, 3, 5, 7, 23, 39829 ...
%e A256236 19601         | 2, 3, 5, 7, 11, 23, 47 ...
%e A256236 132857        | 2, 3, 5, 7, 11, 13, 73, 257 ...
%e A256236 4486949       | 2, 3, 5, 7, 11, 13, 17, 89, 197 ...
%e A256236 126664001     | 2, 3, 5, 7, 11, 13, 17, 19, 101, 2789 ...
%e A256236 2363321449    | 2, 3, 5, 7, 11, 13, 17, 19, 23 ...
%e A256236 5229752849    | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 881, 2246969 ...
%e A256236 2486195039249 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 ...
%t A256236 b = 2; Table[While[fnd = True;
%t A256236   For[i = 1, i <= n, i++,
%t A256236    p = Prime[i];
%t A256236    If[PowerMod[b, (p - 1), p^2] != 1 , fnd = False;  Break[]]];
%t A256236 b++; ! fnd]; b - 1, {n, 5}] (* _Robert Price_, Oct 10 2019 *)
%o A256236 (PARI) a(n) = my(v=primes(n)); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b)))))
%Y A256236 Cf. A255901.
%K A256236 nonn,hard,more
%O A256236 1,1
%A A256236 _Felix Fröhlich_, Mar 25 2015
%E A256236 a(9)-a(11) from _Robert Price_, Oct 10 2019
%E A256236 a(12)-a(17) from _Jens Kruse Andersen_, Dec 28 2020