This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256251 #29 Jun 24 2020 05:28:31 %S A256251 1,4,4,12,4,12,20,28,4,12,20,28,36,44,52,60,4,12,20,28,36,44,52,60,68, %T A256251 76,84,92,100,108,116,124,4,12,20,28,36,44,52,60,68,76,84,92,100,108, %U A256251 116,124,132,140,148,156,164,172,180,188,196,204,212,220,228,236,244,252,4,12,20,28,36,44,52,60,68,76,84,92,100 %N A256251 First differences of A256250. %C A256251 Number of cells turned ON at n-th stage in the structure of A256250. %C A256251 Apart from the initial 1, four times A006257 (Josephus problem). %H A256251 Danny Rorabaugh, <a href="/A256251/b256251.txt">Table of n, a(n) for n = 0..10000</a> %H A256251 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A256251 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A256251 <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a> %F A256251 a(0) = 1. For n >= 1; a(n) = 4*A006257(n). %F A256251 For n>0, a(n) = 8*(n - 2^floor(log_2(n))) + 4 (by the formula of _Gregory Pat Scandalis_ in A006257). - _Danny Rorabaugh_, Apr 20 2015 %e A256251 Written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins: %e A256251 1; %e A256251 4; %e A256251 4,12; %e A256251 4,12,20,28; %e A256251 4,12,20,28,36,44,52,60; %e A256251 4,12,20,28,36,44,52,60,68,76,84,92,100,108,116,124; %e A256251 4,12,20,28,36,44,52,60,68,76,84,92,100,108,116,124,132,140,148,156,164,172,180,188,196,204,212,220,228,236,244,252; %e A256251 ... %e A256251 Row sums give A000302. %e A256251 Right border gives A173033. %o A256251 (Sage) [1] + [8*(n - 2^floor(log(n,base=2))) + 4 for n in range(1,77)] # _Danny Rorabaugh_, Apr 20 2015 %o A256251 (PARI) a(n) = if(n, 8*(n - 2^logint(n,2)) + 4, 1) %Y A256251 Cf. A000302, A006257, A011782, A028399, A139251, A147582, A162793, A169708, A256239. %K A256251 nonn,tabf %O A256251 0,2 %A A256251 _Omar E. Pol_, Mar 20 2015