This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256252 #30 Jun 11 2015 10:26:36 %S A256252 4,1,2,1,2,1,1,2,2,2,1,1,2,1,1,2,1,2,2,2,1,1,2,2,1,1,1,2,1,3,1,1,2,1, %T A256252 2,1,1,6,1,1,1,2,2,4,2,2,1,2,1,1,1,2,1,2,2,4,2,1,2,5,1,5,1,1,2,1,1,2, %U A256252 2,4,1,2,1,2,1,2,2,2,1,1,2,4,1,6,1,1,2,1,1,6,1,2,1,4,2,1,1,2,1,3,1,2,1,2 %N A256252 Number of successive odd noncomposite numbers A006005 and number of successive odd composite numbers A071904, interleaved. %C A256252 See also A256253 and A256262 which contain similar diagrams. %F A256252 a(n) = A256253(n+1), n >= 2. %e A256252 Consider an irregular array in which the odd-indexed rows list successive odd noncomposite numbers (A006005) and the even-indexed rows list successive odd composite numbers (A071904), in the sequence of odd numbers (A005408), as shown below: %e A256252 1, 3, 5, 7; %e A256252 9; %e A256252 11, 13; %e A256252 15; %e A256252 17; 19; %e A256252 21, %e A256252 23; %e A256252 25, 27; %e A256252 39, 31; %e A256252 ... %e A256252 a(n) is the length of the n-th row. %e A256252 . %e A256252 Illustration of the first 16 regions of the diagram of the symmetric representation of odd noncomposite numbers A006005 and odd composite numbers A071904: %e A256252 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A256252 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 31 %e A256252 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ | | 29 %e A256252 . | | |_ _ _ _ _ _ _ _ _ _ _ | | | 23 %e A256252 . | | | |_ _ _ _ _ _ _ _ _ | | | | 19 %e A256252 . | | | |_ _ _ _ _ _ _ _ | | | | | 17 %e A256252 . | | | | |_ _ _ _ _ _ | | | | | | 13 %e A256252 . | | | | |_ _ _ _ _ | | | | | | | 11 %e A256252 . | | | | | |_ _ _ | | | | | | | | 7 %e A256252 . | | | | | |_ _ | | | | | | | | | 5 %e A256252 . | | | | | |_ | | | | | | | | | | 3 %e A256252 . A071904 | | | | | |_|_|_|_| | | | | | | | 1 %e A256252 . 9 | | | | |_ _ _ _ _|_|_| | | | | | A006005 %e A256252 . 15 | | | |_ _ _ _ _ _ _ _|_|_| | | | %e A256252 . 21 | | |_ _ _ _ _ _ _ _ _ _ _|_| | | %e A256252 . 25 | |_ _ _ _ _ _ _ _ _ _ _ _ _| | | %e A256252 . 27 |_ _ _ _ _ _ _ _ _ _ _ _ _ _|_|_| %e A256252 . %e A256252 a(n) is also the length of the n-th boundary segment in the zig-zag path of the above diagram, between the two types of numbers, as shown below for n = 1..9: %e A256252 . _ _ _ _ %e A256252 . |_ _ %e A256252 . |_ _ %e A256252 . |_ %e A256252 . | %e A256252 . |_ _ %e A256252 . %e A256252 The sequence begins: 4,1,2,1,2,1,1,2,2,... %e A256252 . %o A256252 (PARI) lista(nn) = {my(nb = 1, isc = 0); forstep (n=3, nn, 2, if (bitxor(isc, isprime(n)), nb++, print1(nb, ", "); nb = 1; isc = ! isc););} \\ _Michel Marcus_, May 25 2015 %Y A256252 Cf. A005408, A006005, A071904, A256253, A256262. %K A256252 nonn %O A256252 1,1 %A A256252 _Omar E. Pol_, Mar 30 2015