cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256252 Number of successive odd noncomposite numbers A006005 and number of successive odd composite numbers A071904, interleaved.

This page as a plain text file.
%I A256252 #30 Jun 11 2015 10:26:36
%S A256252 4,1,2,1,2,1,1,2,2,2,1,1,2,1,1,2,1,2,2,2,1,1,2,2,1,1,1,2,1,3,1,1,2,1,
%T A256252 2,1,1,6,1,1,1,2,2,4,2,2,1,2,1,1,1,2,1,2,2,4,2,1,2,5,1,5,1,1,2,1,1,2,
%U A256252 2,4,1,2,1,2,1,2,2,2,1,1,2,4,1,6,1,1,2,1,1,6,1,2,1,4,2,1,1,2,1,3,1,2,1,2
%N A256252 Number of successive odd noncomposite numbers A006005 and number of successive odd composite numbers A071904, interleaved.
%C A256252 See also A256253 and A256262 which contain similar diagrams.
%F A256252 a(n) = A256253(n+1), n >= 2.
%e A256252 Consider an irregular array in which the odd-indexed rows list successive odd noncomposite numbers (A006005) and the even-indexed rows list successive odd composite numbers (A071904), in the sequence of odd numbers (A005408), as shown below:
%e A256252 1, 3, 5, 7;
%e A256252 9;
%e A256252 11, 13;
%e A256252 15;
%e A256252 17; 19;
%e A256252 21,
%e A256252 23;
%e A256252 25, 27;
%e A256252 39, 31;
%e A256252 ...
%e A256252 a(n) is the length of the n-th row.
%e A256252 .
%e A256252 Illustration of the first 16 regions of the diagram of the symmetric representation of odd noncomposite numbers A006005 and odd composite numbers A071904:
%e A256252 .            _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
%e A256252 .           |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |   31
%e A256252 .           |_ _ _ _ _ _ _ _ _ _ _ _ _ _  | |   29
%e A256252 .           | | |_ _ _ _ _ _ _ _ _ _ _  | | |   23
%e A256252 .           | | | |_ _ _ _ _ _ _ _ _  | | | |   19
%e A256252 .           | | | |_ _ _ _ _ _ _ _  | | | | |   17
%e A256252 .           | | | | |_ _ _ _ _ _  | | | | | |   13
%e A256252 .           | | | | |_ _ _ _ _  | | | | | | |   11
%e A256252 .           | | | | | |_ _ _  | | | | | | | |    7
%e A256252 .           | | | | | |_ _  | | | | | | | | |    5
%e A256252 .           | | | | | |_  | | | | | | | | | |    3
%e A256252 .   A071904 | | | | | |_|_|_|_| | | | | | | |    1
%e A256252 .      9    | | | | |_ _ _ _ _|_|_| | | | | | A006005
%e A256252 .     15    | | | |_ _ _ _ _ _ _ _|_|_| | | |
%e A256252 .     21    | | |_ _ _ _ _ _ _ _ _ _ _|_| | |
%e A256252 .     25    | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
%e A256252 .     27    |_ _ _ _ _ _ _ _ _ _ _ _ _ _|_|_|
%e A256252 .
%e A256252 a(n) is also the length of the n-th boundary segment in the zig-zag path of the above diagram, between the two types of numbers, as shown below for n = 1..9:
%e A256252 .                      _ _ _ _
%e A256252 .                             |_ _
%e A256252 .                                 |_ _
%e A256252 .                                     |_
%e A256252 .                                       |
%e A256252 .                                       |_ _
%e A256252 .
%e A256252 The sequence begins:      4,1,2,1,2,1,1,2,2,...
%e A256252 .
%o A256252 (PARI) lista(nn) = {my(nb = 1, isc = 0); forstep (n=3, nn, 2, if (bitxor(isc, isprime(n)), nb++, print1(nb, ", "); nb = 1; isc = ! isc););} \\ _Michel Marcus_, May 25 2015
%Y A256252 Cf. A005408, A006005, A071904, A256253, A256262.
%K A256252 nonn
%O A256252 1,1
%A A256252 _Omar E. Pol_, Mar 30 2015