This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256253 #30 Jun 11 2015 10:26:50 %S A256253 1,3,1,2,1,2,1,1,2,2,2,1,1,2,1,1,2,1,2,2,2,1,1,2,2,1,1,1,2,1,3,1,1,2, %T A256253 1,2,1,1,6,1,1,1,2,2,4,2,2,1,2,1,1,1,2,1,2,2,4,2,1,2,5,1,5,1,1,2,1,1, %U A256253 2,2,4,1,2,1,2,1,2,2,2,1,1,2,4,1,6,1,1,2,1,1,6,1,2,1,4,2,1,1,2,1,3,1,2,1,2 %N A256253 Number of successive odd nonprimes A014076 and number of successive odd primes A065091, interleaved. %C A256253 See also A256252 and A256262 which contain similar diagrams. %F A256253 a(n) = A256252(n-1), n >= 3. %e A256253 Consider an irregular array in which the odd-indexed rows list successive odd nonprimes (A014076) and the even-indexed rows list successive odd primes (A065091), in the sequence of odd numbers (A005408), as shown below: %e A256253 1; %e A256253 3, 5, 7; %e A256253 9; %e A256253 11, 13; %e A256253 15; %e A256253 17; 19; %e A256253 21, %e A256253 23; %e A256253 25, 27; %e A256253 39, 31; %e A256253 ... %e A256253 a(n) is the length of the n-th row. %e A256253 . %e A256253 Illustration of the first 16 regions of the diagram of the symmetric representation of odd nonprimes (A014076) and of odd primes (A065091): %e A256253 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A256253 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 31 %e A256253 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ | | 29 %e A256253 . | | |_ _ _ _ _ _ _ _ _ _ _ | | | 23 %e A256253 . | | | |_ _ _ _ _ _ _ _ _ | | | | 19 %e A256253 . | | | |_ _ _ _ _ _ _ _ | | | | | 17 %e A256253 . | | | | |_ _ _ _ _ _ | | | | | | 13 %e A256253 . | | | | |_ _ _ _ _ | | | | | | | 11 %e A256253 . | | | | | |_ _ _ | | | | | | | | 7 %e A256253 . | | | | | |_ _ | | | | | | | | | 5 %e A256253 . A014076 | | | | | |_ | | | | | | | | | | 3 %e A256253 . 1 | | | | | |_|_|_|_| | | | | | | | A065091 %e A256253 . 9 | | | | |_ _ _ _ _|_|_| | | | | | %e A256253 . 15 | | | |_ _ _ _ _ _ _ _|_|_| | | | %e A256253 . 21 | | |_ _ _ _ _ _ _ _ _ _ _|_| | | %e A256253 . 25 | |_ _ _ _ _ _ _ _ _ _ _ _ _| | | %e A256253 . 27 |_ _ _ _ _ _ _ _ _ _ _ _ _ _|_|_| %e A256253 . %e A256253 a(n) is also the length of the n-th boundary segment in the zig-zag path of the above diagram, between the two types of numbers, as shown below for n = 1..10: %e A256253 . %e A256253 . |_ _ _ %e A256253 . |_ _ %e A256253 . |_ _ %e A256253 . |_ %e A256253 . | %e A256253 . |_ _ %e A256253 . %e A256253 The sequence begins: 1,3,1,2,1,2,1,1,2,2,... %e A256253 . %o A256253 (PARI) lista(nn) = {my(nb = 1, isp = 0); forstep (n=3, nn, 2, if (bitxor(isp, ! isprime(n)), nb++, print1(nb, ", "); nb = 1; isp = ! isp););} \\ _Michel Marcus_, May 25 2015 %Y A256253 Cf. A005408, A014076, A047846, A065091, A175632, A251092, A256252, A256134, A256262. %K A256253 nonn %O A256253 1,2 %A A256253 _Omar E. Pol_, Mar 30 2015