cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256253 Number of successive odd nonprimes A014076 and number of successive odd primes A065091, interleaved.

This page as a plain text file.
%I A256253 #30 Jun 11 2015 10:26:50
%S A256253 1,3,1,2,1,2,1,1,2,2,2,1,1,2,1,1,2,1,2,2,2,1,1,2,2,1,1,1,2,1,3,1,1,2,
%T A256253 1,2,1,1,6,1,1,1,2,2,4,2,2,1,2,1,1,1,2,1,2,2,4,2,1,2,5,1,5,1,1,2,1,1,
%U A256253 2,2,4,1,2,1,2,1,2,2,2,1,1,2,4,1,6,1,1,2,1,1,6,1,2,1,4,2,1,1,2,1,3,1,2,1,2
%N A256253 Number of successive odd nonprimes A014076 and number of successive odd primes A065091, interleaved.
%C A256253 See also A256252 and A256262 which contain similar diagrams.
%F A256253 a(n) = A256252(n-1), n >= 3.
%e A256253 Consider an irregular array in which the odd-indexed rows list successive odd nonprimes (A014076) and the even-indexed rows list successive odd primes (A065091), in the sequence of odd numbers (A005408), as shown below:
%e A256253 1;
%e A256253 3, 5, 7;
%e A256253 9;
%e A256253 11, 13;
%e A256253 15;
%e A256253 17; 19;
%e A256253 21,
%e A256253 23;
%e A256253 25, 27;
%e A256253 39, 31;
%e A256253 ...
%e A256253 a(n) is the length of the n-th row.
%e A256253 .
%e A256253 Illustration of the first 16 regions of the diagram of the symmetric representation of odd nonprimes (A014076) and of odd primes (A065091):
%e A256253 .            _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
%e A256253 .           |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |   31
%e A256253 .           |_ _ _ _ _ _ _ _ _ _ _ _ _ _  | |   29
%e A256253 .           | | |_ _ _ _ _ _ _ _ _ _ _  | | |   23
%e A256253 .           | | | |_ _ _ _ _ _ _ _ _  | | | |   19
%e A256253 .           | | | |_ _ _ _ _ _ _ _  | | | | |   17
%e A256253 .           | | | | |_ _ _ _ _ _  | | | | | |   13
%e A256253 .           | | | | |_ _ _ _ _  | | | | | | |   11
%e A256253 .           | | | | | |_ _ _  | | | | | | | |    7
%e A256253 .           | | | | | |_ _  | | | | | | | | |    5
%e A256253 .   A014076 | | | | | |_  | | | | | | | | | |    3
%e A256253 .      1    | | | | | |_|_|_|_| | | | | | | | A065091
%e A256253 .      9    | | | | |_ _ _ _ _|_|_| | | | | |
%e A256253 .     15    | | | |_ _ _ _ _ _ _ _|_|_| | | |
%e A256253 .     21    | | |_ _ _ _ _ _ _ _ _ _ _|_| | |
%e A256253 .     25    | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
%e A256253 .     27    |_ _ _ _ _ _ _ _ _ _ _ _ _ _|_|_|
%e A256253 .
%e A256253 a(n) is also the length of the n-th boundary segment in the zig-zag path of the above diagram, between the two types of numbers, as shown below for n = 1..10:
%e A256253 .
%e A256253 .                       |_ _ _
%e A256253 .                             |_ _
%e A256253 .                                 |_ _
%e A256253 .                                     |_
%e A256253 .                                       |
%e A256253 .                                       |_ _
%e A256253 .
%e A256253 The sequence begins:    1,3,1,2,1,2,1,1,2,2,...
%e A256253 .
%o A256253 (PARI) lista(nn) = {my(nb = 1, isp = 0); forstep (n=3, nn, 2, if (bitxor(isp, ! isprime(n)), nb++, print1(nb, ", "); nb = 1; isp = ! isp););} \\ _Michel Marcus_, May 25 2015
%Y A256253 Cf. A005408, A014076, A047846, A065091, A175632, A251092, A256252, A256134, A256262.
%K A256253 nonn
%O A256253 1,2
%A A256253 _Omar E. Pol_, Mar 30 2015