This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256262 #29 May 26 2021 02:33:27 %S A256262 1,3,1,2,1,2,4,2,4,2,7,2,4,2,13,2,1,2,13,2,4,2,13,2,4,2,1,2,13,2,4,2, %T A256262 13,2,4,2,13,2,16,2,34,2,4,2,13,2,28,2,22,2,13,2,7,2,10,2,7,2,73,2,4, %U A256262 2,1,2,13,2,10,2,67,2,4,2,7,2,4,2,13,2,28,2 %N A256262 Number of successive odd numbers that are not twin primes and number of successive twin primes, interleaved. %C A256262 See also both A256252 and A256253 which contain similar diagrams. %H A256262 Antti Karttunen, <a href="/A256262/b256262.txt">Table of n, a(n) for n = 1..30998</a> %e A256262 Consider an irregular array in which the odd-indexed rows list successive odd numbers that are not twin primes (A255763) and the even-indexed rows list successive twin primes (A001097), in the sequence of odd numbers (A005408), as shown below: %e A256262 1; %e A256262 3, 5, 7; %e A256262 9; %e A256262 11, 13; %e A256262 15; %e A256262 17; 19; %e A256262 21, 23, 25, 27; %e A256262 39, 31; %e A256262 ... %e A256262 a(n) is the length of the n-th row. %e A256262 . %e A256262 Illustration of the first 16 regions of the diagram of the symmetric representation of odd numbers that are not twin primes (A255763) and of twin primes (A001097). %e A256262 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A256262 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 31 %e A256262 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ | | 29 %e A256262 . | | | | |_ _ _ _ _ _ _ _ _ | | | 19 %e A256262 . | | | | |_ _ _ _ _ _ _ _ | | | | 17 %e A256262 . | | | | | |_ _ _ _ _ _ | | | | | 13 %e A256262 . | | | | | |_ _ _ _ _ | | | | | | 11 %e A256262 . | | | | | | |_ _ _ | | | | | | | 7 %e A256262 . | | | | | | |_ _ | | | | | | | | 5 %e A256262 . A255763 | | | | | | |_ | | | | | | | | | 3 %e A256262 . 1 | | | | | | |_|_|_|_| | | | | | | A001097 %e A256262 . 9 | | | | | |_ _ _ _ _|_|_| | | | | %e A256262 . 15 | | | | |_ _ _ _ _ _ _ _|_|_| | | %e A256262 . 21 | | | |_ _ _ _ _ _ _ _ _ _ _| | | %e A256262 . 23 | | |_ _ _ _ _ _ _ _ _ _ _ _| | | %e A256262 . 25 | |_ _ _ _ _ _ _ _ _ _ _ _ _| | | %e A256262 . 27 |_ _ _ _ _ _ _ _ _ _ _ _ _ _|_|_| %e A256262 . %e A256262 a(n) is also the length of the n-th boundary segment in the zig-zag path of the above diagram, between the two types of numbers, as shown below for n = 1..8: %e A256262 . %e A256262 . |_ _ _ %e A256262 . |_ _ %e A256262 . |_ _ %e A256262 . | %e A256262 . | %e A256262 . | %e A256262 . |_ _ %e A256262 . %e A256262 The sequence begins: 1,3,1,2,1,2,4,2,... %e A256262 . %o A256262 (PARI) istwin(n) = isprime(n) && (isprime(n-2) || isprime(n+2)); %o A256262 lista(nn) = {my(nb = 1, istp = 0); forstep (n=3, nn, 2, if (bitxor(istp, ! istwin(n)), nb++, print1(nb, ", "); nb = 1; istp = ! istp););} \\ _Michel Marcus_, May 25 2015 %Y A256262 Cf. A005408, A001097, A256252, A256253, A255763. %K A256262 nonn %O A256262 1,2 %A A256262 _Omar E. Pol_, Mar 31 2015 %E A256262 More terms from _Michel Marcus_, May 25 2015