cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256262 Number of successive odd numbers that are not twin primes and number of successive twin primes, interleaved.

This page as a plain text file.
%I A256262 #29 May 26 2021 02:33:27
%S A256262 1,3,1,2,1,2,4,2,4,2,7,2,4,2,13,2,1,2,13,2,4,2,13,2,4,2,1,2,13,2,4,2,
%T A256262 13,2,4,2,13,2,16,2,34,2,4,2,13,2,28,2,22,2,13,2,7,2,10,2,7,2,73,2,4,
%U A256262 2,1,2,13,2,10,2,67,2,4,2,7,2,4,2,13,2,28,2
%N A256262 Number of successive odd numbers that are not twin primes and number of successive twin primes, interleaved.
%C A256262 See also both A256252 and A256253 which contain similar diagrams.
%H A256262 Antti Karttunen, <a href="/A256262/b256262.txt">Table of n, a(n) for n = 1..30998</a>
%e A256262 Consider an irregular array in which the odd-indexed rows list successive odd numbers that are not twin primes (A255763) and the even-indexed rows list successive twin primes (A001097), in the sequence of odd numbers (A005408), as shown below:
%e A256262 1;
%e A256262 3, 5, 7;
%e A256262 9;
%e A256262 11, 13;
%e A256262 15;
%e A256262 17; 19;
%e A256262 21, 23, 25, 27;
%e A256262 39, 31;
%e A256262 ...
%e A256262 a(n) is the length of the n-th row.
%e A256262 .
%e A256262 Illustration of the first 16 regions of the diagram of the symmetric representation of odd numbers that are not twin primes (A255763) and of twin primes (A001097).
%e A256262 .            _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
%e A256262 .           |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |   31
%e A256262 .           |_ _ _ _ _ _ _ _ _ _ _ _ _ _  | |   29
%e A256262 .           | | | | |_ _ _ _ _ _ _ _ _  | | |   19
%e A256262 .           | | | | |_ _ _ _ _ _ _ _  | | | |   17
%e A256262 .           | | | | | |_ _ _ _ _ _  | | | | |   13
%e A256262 .           | | | | | |_ _ _ _ _  | | | | | |   11
%e A256262 .           | | | | | | |_ _ _  | | | | | | |    7
%e A256262 .           | | | | | | |_ _  | | | | | | | |    5
%e A256262 .   A255763 | | | | | | |_  | | | | | | | | |    3
%e A256262 .      1    | | | | | | |_|_|_|_| | | | | | | A001097
%e A256262 .      9    | | | | | |_ _ _ _ _|_|_| | | | |
%e A256262 .     15    | | | | |_ _ _ _ _ _ _ _|_|_| | |
%e A256262 .     21    | | | |_ _ _ _ _ _ _ _ _ _ _| | |
%e A256262 .     23    | | |_ _ _ _ _ _ _ _ _ _ _ _| | |
%e A256262 .     25    | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
%e A256262 .     27    |_ _ _ _ _ _ _ _ _ _ _ _ _ _|_|_|
%e A256262 .
%e A256262 a(n) is also the length of the n-th boundary segment in the zig-zag path of the above diagram, between the two types of numbers, as shown below for n = 1..8:
%e A256262 .
%e A256262 .                         |_ _ _
%e A256262 .                               |_ _
%e A256262 .                                   |_ _
%e A256262 .                                       |
%e A256262 .                                       |
%e A256262 .                                       |
%e A256262 .                                       |_ _
%e A256262 .
%e A256262 The sequence begins:      1,3,1,2,1,2,4,2,...
%e A256262 .
%o A256262 (PARI) istwin(n) = isprime(n) && (isprime(n-2) || isprime(n+2));
%o A256262 lista(nn) = {my(nb = 1, istp = 0); forstep (n=3, nn, 2, if (bitxor(istp, ! istwin(n)), nb++, print1(nb, ", "); nb = 1; istp = ! istp););} \\ _Michel Marcus_, May 25 2015
%Y A256262 Cf. A005408, A001097, A256252, A256253, A255763.
%K A256262 nonn
%O A256262 1,2
%A A256262 _Omar E. Pol_, Mar 31 2015
%E A256262 More terms from _Michel Marcus_, May 25 2015