This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256263 #56 Feb 14 2017 15:17:01 %S A256263 0,1,1,3,1,3,5,7,1,3,5,7,5,11,17,15,1,3,5,7,5,11,17,15,5,11,17,23,29, %T A256263 35,41,31,1,3,5,7,5,11,17,15,5,11,17,23,29,35,41,31,5,11,17,23,29,35, %U A256263 41,47,53,59,65,71,77,83,89,63,1,3,5,7,5,11,17,15,5,11,17,23,29,35,41,31,5,11,17,23,29,35,41,47,53,59,65,71,77,83,89 %N A256263 Triangle read by rows: T(j,k) = 2*k-1 if k is a power of 2, otherwise, between positions that are powers of 2 we have the initial terms of A016969, with j>=0, 1<=k<=A011782(j) and T(0,1) = 0. %C A256263 Partial sums give A256264. %C A256263 First differs from A160552 at a(27). %C A256263 Appears to be a canonical sequence partially related to the cellular automata of A139250, A147562, A162795, A169707, A255366, A256250. See also A256264 and A256260. %H A256263 Ivan Neretin, <a href="/A256263/b256263.txt">Table of n, a(n) for n = 0..8191</a> %H A256263 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A256263 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %e A256263 Written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins: %e A256263 0; %e A256263 1; %e A256263 1,3; %e A256263 1,3,5,7; %e A256263 1,3,5,7,5,11,17,15; %e A256263 1,3,5,7,5,11,17,15,5,11,17,23,29,35,41,31; %e A256263 1,3,5,7,5,11,17,15,5,11,17,23,29,35,41,31,5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,63; %e A256263 ... %e A256263 Right border gives A000225. %e A256263 Apart from the initial 0 the row sums give A000302. %e A256263 Rows converge to A256258. %e A256263 . %e A256263 Illustration of initial terms in the fourth quadrant of the square grid: %e A256263 --------------------------------------------------------------------------- %e A256263 n a(n) Compact diagram %e A256263 --------------------------------------------------------------------------- %e A256263 0 0 _ %e A256263 1 1 |_|_ _ %e A256263 2 1 |_| | %e A256263 3 3 |_ _|_ _ _ _ %e A256263 4 1 |_| | | | %e A256263 5 3 |_ _| | | %e A256263 6 5 |_ _ _| | %e A256263 7 7 |_ _ _ _|_ _ _ _ _ _ _ _ %e A256263 8 1 |_| | | |_ _ | | %e A256263 9 3 |_ _| | |_ | | | %e A256263 10 5 |_ _ _| | | | | | %e A256263 11 7 |_ _ _ _| | | | | %e A256263 12 5 | | |_ _ _| | | | %e A256263 13 11 | |_ _ _ _ _| | | %e A256263 14 17 |_ _ _ _ _ _ _| | %e A256263 15 15 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A256263 16 1 |_| | | |_ _ | |_ _ _ _ _ _ | | %e A256263 17 3 |_ _| | |_ | | |_ _ _ _ _ | | | %e A256263 18 5 |_ _ _| | | | | |_ _ _ _ | | | | %e A256263 19 7 |_ _ _ _| | | | |_ _ _ | | | | | %e A256263 20 5 | | |_ _ _| | | |_ _ | | | | | | %e A256263 21 11 | |_ _ _ _ _| | |_ | | | | | | | %e A256263 22 17 |_ _ _ _ _ _ _| | | | | | | | | | %e A256263 23 15 |_ _ _ _ _ _ _ _| | | | | | | | | %e A256263 24 5 | | | | | | |_ _ _| | | | | | | | %e A256263 25 11 | | | | | |_ _ _ _ _| | | | | | | %e A256263 26 17 | | | | |_ _ _ _ _ _ _| | | | | | %e A256263 27 23 | | | |_ _ _ _ _ _ _ _ _| | | | | %e A256263 28 29 | | |_ _ _ _ _ _ _ _ _ _ _| | | | %e A256263 29 35 | |_ _ _ _ _ _ _ _ _ _ _ _ _| | | %e A256263 30 41 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | %e A256263 31 31 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| %e A256263 . %e A256263 a(n) is also the number of cells in the n-th region of the diagram. %e A256263 A256264(n) gives the total number of cells after n-th stage. %t A256263 Flatten@Join[{0}, NestList[Join[#, Range[Length[#] - 1]*6 - 1, {2 #[[-1]] + 1}] &, {1}, 6]] (* _Ivan Neretin_, Feb 14 2017 *) %Y A256263 Cf. A000225, A000302, A011782, A038573, A006257, A016969, A139251, A160552, A256250, A256258, A256260, A256261, A256264, A256265. %K A256263 nonn,tabf,look %O A256263 0,4 %A A256263 _Omar E. Pol_, Mar 30 2015 %E A256263 Terms a(95) to a(98) fixed by _Ivan Neretin_, Feb 14 2017