cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256264 Partial sums of A256263.

Original entry on oeis.org

0, 1, 2, 5, 6, 9, 14, 21, 22, 25, 30, 37, 42, 53, 70, 85, 86, 89, 94, 101, 106, 117, 134, 149, 154, 165, 182, 205, 234, 269, 310, 341, 342, 345, 350, 357, 362, 373, 390, 405, 410, 421, 438, 461, 490, 525, 566, 597, 602, 613, 630, 653, 682, 717, 758, 805, 858, 917, 982, 1053, 1130, 1213, 1302, 1365
Offset: 0

Views

Author

Omar E. Pol, Mar 30 2015

Keywords

Comments

First differs from A255747 at a(27).

Examples

			Also, written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
0,
1,
2,   5,
6,   9, 14,  21,
22, 25, 30,  37,  42,  53,  70,  85;
86, 89, 94, 101, 106, 117, 134, 149, 154, 165, 182, 205, 234, 269,310,341;
...
It appears that the first column gives 0 together with the terms of A047849, hence the right border gives A002450.
It appears that this triangle at least shares with the triangles from the following sequences; A151920, A255737, A255747, A256249, the positive elements of the columns k, if k is a power of 2.
From _Omar E. Pol, Jan 02 2016: (Start)
Illustration of initial terms in the fourth quadrant of the square grid:
---------------------------------------------------------------------------
n    a(n)                 Compact diagram
---------------------------------------------------------------------------
0     0     _
1     1    |_|_ _
2     2      |_| |
3     5      |_ _|_ _ _ _
4     6          |_| | | |
5     9          |_ _| | |
6    14          |_ _ _| |
7    21          |_ _ _ _|_ _ _ _ _ _ _ _
8    22                  |_| | | |_ _  | |
9    25                  |_ _| | |_  | | |
10   30                  |_ _ _| | | | | |
11   37                  |_ _ _ _| | | | |
12   42                  | | |_ _ _| | | |
13   53                  | |_ _ _ _ _| | |
14   70                  |_ _ _ _ _ _ _| |
15   85                  |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
16   86                                  |_| | | |_ _  | |_ _ _ _ _ _  | |
17   89                                  |_ _| | |_  | | |_ _ _ _ _  | | |
18   94                                  |_ _ _| | | | | |_ _ _ _  | | | |
19  101                                  |_ _ _ _| | | | |_ _ _  | | | | |
20  106                                  | | |_ _ _| | | |_ _  | | | | | |
21  117                                  | |_ _ _ _ _| | |_  | | | | | | |
22  134                                  |_ _ _ _ _ _ _| | | | | | | | | |
23  149                                  |_ _ _ _ _ _ _ _| | | | | | | | |
24  154                                  | | | | | | |_ _ _| | | | | | | |
25  165                                  | | | | | |_ _ _ _ _| | | | | | |
26  182                                  | | | | |_ _ _ _ _ _ _| | | | | |
27  205                                  | | | |_ _ _ _ _ _ _ _ _| | | | |
28  234                                  | | |_ _ _ _ _ _ _ _ _ _ _| | | |
29  269                                  | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
30  310                                  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
31  341                                  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
a(n) is also the total number of cells in the first n regions of the diagram. A256263(n) gives the number of cells in the n-th region of the diagram.
(End)
		

Crossrefs

Programs

  • Mathematica
    Accumulate@Flatten@Join[{0}, NestList[Join[#, Range[Length[#] - 1]*6 - 1, {2 #[[-1]] + 1}] &, {1}, 5]] (* Ivan Neretin, Feb 14 2017 *)

Formula

a(n) = (A256260(n+1) - 1)/4.