cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256266 Total number of ON states after n generations of cellular automaton based on triangles (see Comments lines for definition).

Original entry on oeis.org

0, 6, 18, 24, 48, 66, 78, 84, 132, 174, 210, 240, 264, 282, 294, 300, 396, 486, 570, 648, 720, 786, 846, 900, 948, 990, 1026, 1056, 1080, 1098, 1110, 1116, 1308, 1494, 1674, 1848, 2016, 2178, 2334, 2484, 2628, 2766, 2898, 3024, 3144, 3258, 3366, 3468, 3564, 3654, 3738, 3816, 3888, 3954, 4014, 4068, 4116, 4158, 4194, 4224, 4248
Offset: 0

Views

Author

Omar E. Pol, Mar 20 2015

Keywords

Comments

On the infinite triangular grid we start at stage 0 with a hexagon formed by six OFF cells, so a(0) = 0.
At stage 1, around the mentioned hexagon, six triangular cells connected by their vertices are turned ON forming a six-pointed star, so a(1) = 6.
We use the same rules as A255748 for every one of the six 60-degree wedges of the structure.
If n is a power of 2 minus 1 and n is greater than 2, then the structure looks like concentric six-pointed stars.
If n is a power of 2 and n is greater than 2, then the structure looks like a hexagon that contains concentric six-pointed stars.
Note that in every wedge the structure seems to grow into the holes of a virtual SierpiƄski's triangle (see example).

Examples

			Illustration of the structure after 15 generations:
(Note that every circle should be replaced with a triangle.)
.
.                            O
.                           O O
.                          O O O
.                         O O O O
.                        O O O O O
.                       O O O O O O
.                      O O O O O O O
.                     O O O O O O O O
.    O O O O O O O O \       O       / O O O O O O O O
.     O O O O O O O   \     O O     /   O O O O O O O
.      O O O O O O     \   O O O   /     O O O O O O
.       O O O O O       \ O O O O /       O O O O O
.        O O O O O O O O \   O   / O O O O O O O O
.         O O O   O O O   \ O O /   O O O   O O O
.          O O     O O O O \ O / O O O O     O O
.           O       O   O O \ / O O   O       O
.            - - - - - - - -   - - - - - - - -
.           O       O   O O / \ O O   O       O
.          O O     O O O O / O \ O O O O     O O
.         O O O   O O O   / O O \   O O O   O O O
.        O O O O O O O O /   O   \ O O O O O O O O
.       O O O O O       / O O O O \       O O O O O
.      O O O O O O     /   O O O   \     O O O O O O
.     O O O O O O O   /     O O     \   O O O O O O O
.    O O O O O O O O /       O       \ O O O O O O O O
.                     O O O O O O O O
.                      O O O O O O O
.                       O O O O O O
.                        O O O O O
.                         O O O O
.                          O O O
.                           O O
.                            O
.
There are 300 ON cells, so a(15) = 300.
		

Crossrefs

Programs

  • Mathematica
    6*Join[{0}, Accumulate@ Flatten@ Table[Range[2^n, 1, -1], {n, 0, 5}]] (* Michael De Vlieger, Nov 03 2022 *)

Formula

a(n) = 6 * A255748(n), n >= 1.