This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256268 #25 Sep 08 2022 08:46:11 %S A256268 1,1,1,1,1,1,1,2,1,1,1,6,3,1,1,1,24,15,4,1,1,1,120,105,28,5,1,1,1,720, %T A256268 945,280,45,6,1,1,1,5040,10395,3640,585,66,7,1,1,1,40320,135135,58240, %U A256268 9945,1056,91,8,1,1,1,362880,2027025,1106560,208845,22176,1729,120,9,1,1 %N A256268 Table of k-fold factorials, read by antidiagonals. %C A256268 A variant of A142589. %H A256268 G. C. Greubel, <a href="/A256268/b256268.txt">Antidiagonal rows n = 0..100, flattened</a> %F A256268 A(n, k) = (-n)^k*FallingFactorial(-1/n, k) for n >= 1. - _Peter Luschny_, Dec 21 2021 %e A256268 1 1 1 1 1 1 1... A000012 %e A256268 1 1 2 6 24 120 720... A000142 %e A256268 1 1 3 15 105 945 10395... A001147 %e A256268 1 1 4 28 280 3640 58240... A007559 %e A256268 1 1 5 45 585 9945 208845... A007696 %e A256268 1 1 6 66 1056 22176 576576... A008548 %e A256268 1 1 7 91 1729 43225 1339975... A008542 %e A256268 1 1 8 120 2640 76560 2756160... A045754 %e A256268 1 1 9 153 3825 126225 5175225... A045755 %e A256268 1 1 10 190 5320 196840 9054640... A045756 %e A256268 1 1 11 231 7161 293601 14977651... A144773 %p A256268 seq(seq( mul(j*k+1, j=0..n-k-1), k=0..n), n=0..12); # _G. C. Greubel_, Mar 04 2020 %t A256268 T[n_, k_]= Product[j*k+1, {j,0,n-1}]; Table[T[n-k,k], {n,0,12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Mar 04 2020 *) %o A256268 (PARI) T(n,k) = prod(j=0, n-1, j*k+1); %o A256268 for(n=0,12, for(k=0, n, print1(T(n-k, k), ", "))) \\ _G. C. Greubel_, Mar 04 2020 %o A256268 (Magma) %o A256268 function T(n,k) %o A256268 if k eq 0 or n eq 0 then return 1; %o A256268 else return (&*[j*k+1: j in [0..n-1]]); %o A256268 end if; return T; end function; %o A256268 [T(n-k,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Mar 04 2020 %o A256268 (Sage) [[ product(j*k+1 for j in (0..n-k-1)) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Mar 04 2020 %o A256268 (GAP) Flat(List([0..12], n-> List([0..n], k-> Product([0..n-k-1], j-> j*k+1) ))); # _G. C. Greubel_, Mar 04 2020 %Y A256268 Cf. Columns : A000012, A000012, A000384, A011199, A011245. %Y A256268 Cf. Diagonals : A092985, A076111, A158887. %Y A256268 Cf. A048994, A132393. %Y A256268 Cf. A000142 ("1-fold"), A001147 (2-fold), A007559 (3), A007696 (4), A008548 (5), A008542 (6), A045754 (7), A045755 (8), A045756 (9), A144773 (10) %K A256268 nonn,tabl %O A256268 0,8 %A A256268 _Philippe Deléham_, Jun 01 2015