cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256273 Decimal expansion of Integral_{0..infinity} exp(-x^2)*cosh(sqrt(1+x^2)) dx.

Original entry on oeis.org

1, 6, 6, 1, 0, 9, 5, 8, 4, 5, 5, 4, 7, 7, 5, 5, 7, 0, 2, 6, 2, 2, 9, 1, 3, 9, 3, 7, 5, 3, 9, 9, 0, 5, 9, 6, 4, 0, 1, 2, 6, 9, 9, 5, 0, 4, 1, 5, 6, 0, 2, 2, 0, 0, 7, 2, 8, 4, 3, 5, 9, 1, 4, 1, 2, 9, 9, 7, 5, 8, 3, 5, 2, 1, 5, 4, 6, 8, 1, 5, 2, 8, 1, 7, 6, 2, 9, 7, 4, 4, 0, 3, 3, 0, 6, 9, 7, 9, 4, 3, 3, 7, 1, 7, 0
Offset: 1

Views

Author

Jean-François Alcover, Jun 02 2015

Keywords

Examples

			1.661095845547755702622913937539905964012699504156022...
		

Programs

  • Maple
    evalf(Int(exp(-x^2)*cosh(sqrt(1+x^2)), x=0..infinity), 120); # Vaclav Kotesovec, Jun 02 2015
  • Mathematica
    NIntegrate[Exp[-x^2]*Cosh[Sqrt[1 + x^2]], {x, 0, Infinity}, WorkingPrecision -> 105] // RealDigits // First

Formula

Also equals sqrt(Pi)*Sum_{n>=0} (Sum_{k>=n} (-1)^n*k!/((2*k)!*Beta(n + 1, 1/2 - n)*(k - n)!)), where Beta is the Euler beta function.