cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256319 Decimal expansion of Sum_{k>=0} (zeta(2k)/(2k+1))*(3/4)^(2k) (negated).

This page as a plain text file.
%I A256319 #15 Sep 08 2022 08:46:11
%S A256319 0,7,6,0,9,9,8,2,7,1,2,9,7,1,3,4,0,0,6,4,1,5,1,3,2,1,1,5,4,1,7,4,5,8,
%T A256319 3,5,7,3,0,8,5,2,9,8,2,2,6,1,4,5,1,3,9,0,1,0,9,8,3,6,1,4,6,0,0,2,7,6,
%U A256319 5,8,5,9,8,6,5,6,1,0,7,2,4,9,9,2,5,9,0,2,2,3,6,4,8,0,5,9,9,8,5,5,8,2,5
%N A256319 Decimal expansion of Sum_{k>=0} (zeta(2k)/(2k+1))*(3/4)^(2k) (negated).
%H A256319 G. C. Greubel, <a href="/A256319/b256319.txt">Table of n, a(n) for n = 0..10000</a>
%H A256319 H. M. Srivasata, M. L. Glasser, Victor S. Adamchik, <a href="https://kilthub.cmu.edu/articles/journal%20contribution/Some_Definite_Integrals_Associated_with_the_Riemann_Zeta_Function/6609653/1">Some Definite Integrals Associated with the Riemann Zeta Function</a>
%F A256319 Equals G/(3*Pi) - log(2)/4, where G is Catalan's constant.
%e A256319 -0.0760998271297134006415132115417458357308529822614513901...
%t A256319 Join[{0}, RealDigits[Catalan/(3 Pi) - Log[2]/4, 10, 102] // First]
%o A256319 (PARI) suminf(k=0, (zeta(2*k)/(2*k+1))*(3/4)^(2*k)) \\ _Michel Marcus_, Mar 23 2015
%o A256319 (PARI) default(realprecision, 100); Catalan/(3*Pi) - log(2)/4 \\ _G. C. Greubel_, Aug 25 2018
%o A256319 (Magma) SetDefaultRealField(RealField(100)); R:=RealField(); Catalan(R)/(3*Pi(R)) - Log(2)/4; // _G. C. Greubel_, Aug 25 2018
%Y A256319 Cf. A006752, A256318.
%K A256319 nonn,cons,easy
%O A256319 0,2
%A A256319 _Jean-François Alcover_, Mar 23 2015