This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256325 #10 Feb 24 2021 08:20:00 %S A256325 0,0,1,5,24,136,933,7589,71376,760796,9051353,118784325,1703388648, %T A256325 26486926720,443732646029,7965563713781,152504645563072, %U A256325 3101366761047860,66753627906345057,1515914174890163541,36218232449903567992,908098606824551207384,23839591584412453131765 %N A256325 a(n) = Sum_{k=0..n-1} (n-k)!*exp(-k/2)*M_{k-n,1/2}(k), where M is the Whittaker function. %H A256325 G. C. Greubel, <a href="/A256325/b256325.txt">Table of n, a(n) for n = 0..250</a> %H A256325 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a> %F A256325 a(n) = Sum_{k=0..n-1} k*(n-k)!*hypergeom([k-n+1],[2],-k). %F A256325 a(n) = Sum_{k=0..n-1}(Sum_{j=0.. n-k}((n-k-j)!*C(n-k,j)*C(n-k-1,j-1)*k^j)). %F A256325 a(n) = Sum_{k=0..n-1} (n-k-1)* k! * LaguerreL(k, 1, k-n+1). - _G. C. Greubel_, Feb 23 2021 %p A256325 a := n -> add(exp(-k/2)*WhittakerM(-(n-k),1/2,k)*(n-k)!,k=0..n-1): %p A256325 seq(round(evalf(a(n),64)), n=0..22); %p A256325 # Alternatively: %p A256325 a := n -> add(k*(n-k)!*hypergeom([k-n+1],[2],-k),k=0..n-1): %p A256325 seq(simplify(a(n)), n=0..22); %t A256325 Table[Sum[(n-k-1)*k!*LaguerreL[k, 1, k-n+1], {k,0,n-1}], {n,0,30}] (* _G. C. Greubel_, Feb 23 2021 *) %o A256325 (Sage) [sum( (n-k-1)*factorial(k)*gen_laguerre(k, 1, k-n+1) for k in (0..n-1) ) for n in (0..30)] # _G. C. Greubel_, Feb 23 2021 %o A256325 (Magma) [n eq 0 select 0 else (&+[(n-k-1)*Factorial(k)*Evaluate( LaguerrePolynomial(k, 1), k-n+1): k in [0..n-1]]): n in [0..30]]; // _G. C. Greubel_, Feb 23 2021 %Y A256325 Cf. A253286. %K A256325 nonn,easy %O A256325 0,4 %A A256325 _Peter Luschny_, Mar 24 2015