This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256332 #20 Oct 06 2019 09:04:08 %S A256332 1,3,13,65,351,1994,11747,71117,439765,2765775,17636697,113766694, %T A256332 741032618,4867177299,32199559769,214369107989,1435126789097, %U A256332 9655274425496,65246685081291,442668997422749,3014127038713923,20590331364902095,141078438156193677,969270926188235574,6676082724399618966,46089922748156948822,318876966533117953114,2210580887889464667057,15353093117180070481879,106816339860746421126519 %N A256332 Number of D&P Family matchings on n edges. %H A256332 A. Condon, B. Davy, B. Rastegari, S. Zhao and F. Tarrant, <a href="http://dx.doi.org/10.1016/j.tcs.2004.03.042"> RNA pseudoknotted structures</a>, Theoret. Comput. Sci. 320(1), (2004), 35-50. %H A256332 R. M. Dirks and N. A. Pierce, <a href="http://dx.doi.org/10.1002/jcc.10296">A partition function algorithm for nucleic acid secondary structure including pseudoknots</a>, J. Compute. Chem. 24 (2003), 1664-1677. %H A256332 Aziza Jefferson, <a href="http://ufdc.ufl.edu/UFE0047620">The Substitution Decomposition of Matchings and RNA Secondary Structures</a>, PhD Thesis, University of Florida, 2015. %H A256332 C. Saule, M. Régnier, J.-M. Steyaert, and A. Denise, <a href="http://dx.doi.org/10.1089/cmb.2010.0086"> Counting RNA pseudoknotted structures</a>, J. Comput. Biol. 18(10), (2011), 1339-1351. %F A256332 G.f. f satisfies x^3f^6-x^2f^5+2xf^3-xf^2-f+1=0. %e A256332 a(3)=13 because of the 15 matchings on 3 edges, two do not lie in the D&P Family. In canonical sequence form, the missing matchings are given by 121323 and 123123. %p A256332 f := RootOf(x^3*_Z^6-x^2*_Z^5+2*x*_Z^3-x*_Z^2-_Z+1); %p A256332 series(f, x=0, 30); %K A256332 nonn %O A256332 1,2 %A A256332 _Aziza Jefferson_, Mar 25 2015