cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256333 Number of R&G Family matchings on n edges.

This page as a plain text file.
%I A256333 #20 Oct 06 2019 09:04:15
%S A256333 1,3,13,61,301,1552,8277,45284,252753,1433633,8239993,47887467,
%T A256333 280927846,1661387046,9894376821,59288650788,357198545904,
%U A256333 2162437157263,13147835385477,80251977589719,491573099486143,3020738578507674,18617035563669489,115046892012376542,712710925868858139,4425312432316379040,27535525144298975942,171670784266383750322,1072246008621559982926,6708644077265798380125
%N A256333 Number of R&G Family matchings on n edges.
%C A256333 The R&G Family of matchings is the family of matchings formed by first vertex insertions into the hairpin or single edge (as long as the inserted edge does not have an outer edge connecting the first and last vertex), then edge inflations by ladders of the original single edge or hairpin.
%H A256333 Aziza Jefferson, <a href="http://ufdc.ufl.edu/UFE0047620">The Substitution Decomposition of Matchings and RNA Secondary Structures</a>, PhD Thesis, University of Florida, 2015.
%H A256333 J. Reeder and R. Giegerich, <a href="http://dx.doi.org/10.1186/1471-2105-5-104"> Design, implementation and evaluation of a practical pseudo knot folding algorithm based on thermodynamics</a>, BMC Bioinform. 5 (2004), Article #104.
%H A256333 C. Saule, M. Régnier, J.-M. Steyaert, and A. Denise, <a href="http://dx.doi.org/10.1089/cmb.2010.0086"> Counting RNA pseudoknotted structures</a>, J. Comput. Biol. 18(10), (2011), 1339-1351.
%F A256333 G.f. f satisfies x^2f^4 + x(1-x)^2f^2 - (1-x)^2f + (1-x)^2.
%e A256333 a(3)=13 because of the 15 matchings on 3 edges, two do not lie in the R&G Family. In canonical sequence form the missing matchings are given by 121323 and 123123. a(4)= 61 out of the 105 matchings on 4 edges, one such matching which does not lie in the R&G Family is given by 12234314.
%p A256333 f := RootOf(x^2*_Z^4 + x*(1-x)*(_Z-x*_Z)*_Z - (1-x)^2*_Z + (1-x)^2);
%p A256333 series(f, x=0, 30);
%K A256333 nonn
%O A256333 1,2
%A A256333 _Aziza Jefferson_, Mar 25 2015