cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256343 Moduli k for which A248218(k) = 3 (length of the terminating cycle of 0 under x -> x^2+1 modulo k).

Original entry on oeis.org

5, 9, 15, 25, 27, 35, 45, 59, 63, 75, 95, 97, 105, 125, 135, 155, 171, 175, 177, 185, 189, 215, 225, 251, 279, 285, 291, 295, 315, 333, 375, 379, 387, 413, 419, 465, 475, 485, 513, 525, 531, 555, 617, 625, 645, 665, 675, 679, 753, 775, 785, 837, 855, 863, 873, 875, 885
Offset: 1

Views

Author

M. F. Hasler, Mar 25 2015

Keywords

Comments

All terms are odd. - Robert Israel, Dec 09 2020
If x is a term and y is a term of this sequence or A248219, then LCM(x,y) is a term. - Robert Israel, Mar 09 2021

Crossrefs

Programs

  • Maple
    f:= proc(n) local x, S, R,i;
      R:= Array(0..n,-1):
      R[0]:= 0: x:= 0;
      for i from 1 do
        x:= x^2+1 mod n;
        if R[x] >= 0 then return i - R[x] fi;
        R[x]:= i;
      od
    end proc:
    select(f=3, [seq(i,i=1..1000,2)]); # Robert Israel, Dec 09 2020
  • Mathematica
    f[n_] := Module[{x, R, i}, R[_] = -1; R[0] = 0; x = 0; For[i = 1, True, i++, x = Mod[x^2+1, n]; If[R[x] >= 0, Return[i - R[x]]]; R[x] = i]];
    Select[Table[i, {i, 1, 1000, 2}], f[#] == 3&] (* Jean-François Alcover, Feb 03 2023, after Robert Israel *)
  • PARI
    for(i=1,900,A248218(i)==3&&print1(i","))