This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256344 #11 Mar 09 2021 20:15:17 %S A256344 13,26,39,47,52,78,79,91,94,104,113,141,143,156,158,169,173,182,188, %T A256344 197,208,226,237,247,273,282,286,299,312,316,329,338,339,346,353,364, %U A256344 376,377,394,403,416,429,439,452,474,481,494,507,517,519,546,553,559,564,572,591,598 %N A256344 Moduli n for which A248218(n) = 4 (length of the terminating cycle of 0 under x -> x^2+1 modulo n). %C A256344 If x is a member and y is a member of this sequence or A248219 or A256342, then LCM(x,y) is a member. - _Robert Israel_, Mar 09 2021 %H A256344 Robert Israel, <a href="/A256344/b256344.txt">Table of n, a(n) for n = 1..10000</a> %e A256344 See A256342 or A256349. %p A256344 filter:= proc(n) local x, k, R,p; %p A256344 x:= 0; R[0]:= 0; %p A256344 for k from 1 do %p A256344 x:= x^2+1 mod n; %p A256344 if assigned(R[x]) then return evalb(k-R[x] = 4) %p A256344 else R[x]:= k %p A256344 fi %p A256344 od; %p A256344 end proc: %p A256344 select(filter, [$1..1000]); # _Robert Israel_, Mar 09 2021 %o A256344 (PARI) for(i=1,600,A248218(i)==4&&print1(i",")) %Y A256344 Cf. A248218, A248219, A256342 - A256349, A003095, A247981. %K A256344 nonn %O A256344 1,1 %A A256344 _M. F. Hasler_, Mar 25 2015