This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256345 #8 Mar 10 2021 01:19:00 %S A256345 83,151,167,223,249,257,283,359,373,453,501,563,581,607,669,677,771, %T A256345 821,849,953,1057,1077,1119,1169,1321,1561,1577,1689,1743,1799,1821, %U A256345 1981,1987,2017,2031,2463,2513,2573,2611,2833,2859,2869 %N A256345 Moduli n for which A248218(n) = 5 (length of the terminating cycle of 0 under x -> x^2+1 modulo n). %C A256345 If x is a member and y is a member of this sequence or A248219, then LCM(x,y) is a member. - _Robert Israel_, Mar 09 2021 %H A256345 Robert Israel, <a href="/A256345/b256345.txt">Table of n, a(n) for n = 1..5000</a> %e A256345 See A256342 or A256349. %p A256345 filter:= proc(n) local x, k, R,p; %p A256345 x:= 0; R[0]:= 0; %p A256345 for k from 1 do %p A256345 x:= x^2+1 mod n; %p A256345 if assigned(R[x]) then return evalb(k-R[x] = 5) %p A256345 else R[x]:= k %p A256345 fi %p A256345 od; %p A256345 end proc: %p A256345 select(filter, [$1..3000]); # _Robert Israel_, Mar 09 2021 %o A256345 (PARI) for(i=1,2900,A248218(i)==5&&print1(i",")) %Y A256345 Cf. A248218, A248219, A256342 - A256349, A003095, A247981. %K A256345 nonn %O A256345 1,1 %A A256345 _M. F. Hasler_, Mar 25 2015