cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A256349 Moduli n for which A248218(n) = 9.

Original entry on oeis.org

81, 101, 271, 303, 361, 405, 505, 509, 567, 653, 707, 743, 813, 839, 909, 1033, 1083, 1187, 1355, 1447, 1515, 1527, 1539, 1753, 1805, 1897, 1919, 1959, 2025, 2121, 2229, 2381, 2439, 2511, 2517, 2525, 2527, 2545, 2579, 2687, 2727, 2749, 2753, 2777, 2803, 2835
Offset: 1

Views

Author

M. F. Hasler, Mar 25 2015

Keywords

Comments

If x is a member of this sequence, and y is a member of this sequence or A248219 or A256343, then LCM(x,y) is a member of this sequence. - Robert Israel, Mar 09 2021

Examples

			In Z/81Z, the iteration of x -> x^2+1 starting at x = 0 yields (0, 1, 2, 5, 26, 29, 32, 53, 56, 59, 80, 2, ...), and m = 81 is the least positive number for which there is such a cycle of length 9, here [2, 5, 26, 29, 32, 53, 56, 59, 80], therefore a(1) = 81.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local x, k, R,p;
      x:= 0; R[0]:= 0;
      for k from 1 do
        x:= x^2+1 mod n;
        if assigned(R[x]) then return evalb(k-R[x] = 9)
        else R[x]:= k
        fi
      od;
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Mar 09 2021
  • Mathematica
    filterQ[n_] := Module[{x, k, R}, x = 0; R[0] = 0; For[k = 1, True, k++, x = Mod[x^2 + 1, n]; If[IntegerQ[R[x]], Return[k - R[x] == 9], R[x] = k]]];
    Select[Range[10000], filterQ] (* Jean-François Alcover, Feb 01 2023, after Robert Israel *)
  • PARI
    for(i=1,3000,A248218(i)==9&&print1(i","))
Showing 1-1 of 1 results.