This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256361 #26 Feb 16 2025 08:33:25 %S A256361 17,28,29,45,50,85,126,133,136,145,153,160,200,245,250,260,261,265, %T A256361 353,365,371,405,425,442,450,490,514,520,533,585,605,650,666,680,738, %U A256361 800,855,925,936,1000,1025,1105,1225,1233,1250,1280 %N A256361 Numbers that are multiple-digit narcissistic numbers in exactly two bases. %H A256361 Tim Johannes Ohrtmann, <a href="/A256361/b256361.txt">Table of n, a(n) for n = 1..3541</a> %H A256361 W. Schneider, <a href="http://web.archive.org/web/20050213060737/http://www.wschnei.de/digit-related-numbers/pdi.html">Perfect Digital Invariants: Pluperfect Digital Invariants(PPDIs)</a> %H A256361 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NarcissisticNumber.html">Narcissistic Number</a> %H A256361 Wikipedia, <a href="http://en.wikipedia.org/wiki/Narcissistic_number">Narcissistic number</a> %e A256361 a(1) = 17 because this is the first number that is a multiple-digit narcissistic number in exactly two bases (3 and 13). %o A256361 (PARI) for(n=3, 1000000, k=0; for(z=2, n, y=n; j=0; L=List(); until(y==0, x=y%z; j++; listinsert(L, x, j); while(!((y%z)==0), y--); y=y/z); t=0; for(p=1, j, t+=L[p]^j); if(n==t, k++)); if(k==2, print1(n, ", "))) %Y A256361 Cf. A005188. %Y A256361 Cf. A256359 (every number of bases). %Y A256361 Cf. A256360, A256362, A256363, A256364, A256365 (1, 3 to 6 bases). %Y A256361 Cf. A256459 (first occurrences). %K A256361 nonn,base %O A256361 1,1 %A A256361 _Tim Johannes Ohrtmann_, Mar 26 2015